Structural insights into mRNA reading frame regulation by tRNA modification and slippery codon-anticodon pairing

  1. Eric Hoffer
  2. Samuel Hong
  3. S. Sunita
  4. Tatsuya Maehigashi
  5. Ruben L Gonzalez Jnr
  6. Paul Whitford
  7. Christine M Dunham  Is a corresponding author
  1. Emory University School of Medicine, United States
  2. Columbia University, United States
  3. Northeastern University, United States

Abstract

Modifications in the tRNA anticodon loop, adjacent to the three-nucleotide anticodon, influence translation fidelity by stabilizing the tRNA to allow for accurate reading of the mRNA genetic code. One example is the N1-methylguaonosine modification at guanine nucleotide 37 (m1G37) located in the anticodon loop, immediately adjacent to the anticodon nucleotides 34-36. The absence of m1G37 in tRNAPro causes +1 frameshifting on polynucleotide, slippery codons. Here, we report structures of the bacterial ribosome containing tRNAPro bound to either cognate or slippery codons to determine how the m1G37 modification prevents mRNA frameshifting. The structures reveal that certain codon-anticodon contexts and m1G37 destabilize interactions of tRNAPro with the peptidyl site, causing large conformational changes typically only seen during EF-G mediated translocation of the mRNA-tRNA pairs. These studies provide molecular insights into how m1G37 stabilizes the interactions of tRNAPro with the ribosome and the influence of slippery codons on the mRNA reading frame.

Data availability

Crystallography, atomic coordinates, and structure factors have been deposited in the Protein Data Bank, www.pdb.org (PDB codes 6NTA, 6NSH, 6NUO, 6NWY, 6O3M, 6OSI)

The following data sets were generated

Article and author information

Author details

  1. Eric Hoffer

    Biochemistry, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Samuel Hong

    Biochemistry, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. S. Sunita

    Biochemistry, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tatsuya Maehigashi

    Biochemistry, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ruben L Gonzalez Jnr

    Department of Chemistry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1344-5581
  6. Paul Whitford

    Physics, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christine M Dunham

    Biochemistry, Emory University School of Medicine, Atlanta, United States
    For correspondence
    cmdunha@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8821-688X

Funding

National Institutes of Health (R01GM093278)

  • Christine M Dunham

National Institutes of Health (R01GM119386)

  • Ruben L Gonzalez

National Science Foundation (MCB-1915843)

  • Paul Whitford

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Hoffer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,600
    views
  • 366
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric Hoffer
  2. Samuel Hong
  3. S. Sunita
  4. Tatsuya Maehigashi
  5. Ruben L Gonzalez Jnr
  6. Paul Whitford
  7. Christine M Dunham
(2020)
Structural insights into mRNA reading frame regulation by tRNA modification and slippery codon-anticodon pairing
eLife 9:e51898.
https://doi.org/10.7554/eLife.51898

Share this article

https://doi.org/10.7554/eLife.51898

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.