1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Mechanistic basis of the inhibition of SLC11/NRAMP-mediated metal ion transport by bis-isothiourea substituted compounds

  1. Cristina Manatschal  Is a corresponding author
  2. Jonai Pujol-Giménez
  3. Marion Poirier
  4. Jean-Louis Reymond
  5. Matthias A Hediger
  6. Raimund Dutzler  Is a corresponding author
  1. University of Zürich, Switzerland
  2. University of Bern, Switzerland
Research Article
  • Cited 7
  • Views 1,213
  • Annotations
Cite this article as: eLife 2019;8:e51913 doi: 10.7554/eLife.51913

Abstract

In humans, the divalent metal-ion transporter-1 (DMT1) mediates the transport of ferrous iron across the apical membrane of enterocytes. Hence, its inhibition could be beneficial for the treatment of iron overload disorders. Here we characterize the interaction of aromatic bis-isothiourea-substituted compounds with human DMT1 and its prokaryotic homologue EcoDMT. Both transporters are inhibited by a common competitive mechanism with potencies in the low micromolar range. The crystal structure of EcoDMT in complex with a brominated derivative defines the binding of the inhibitor to an extracellular pocket of the transporter in direct contact with residues of the metal ion coordination site, thereby interfering with substrate loading and locking the transporter in its outward-facing state. Mutagenesis and structure-activity relationships further support the observed interaction mode and reveal species-dependent differences between pro- and eukaryotic transporters. Together, our data provide the first detailed mechanistic insight into the pharmacology of SLC11/NRAMP transporters.

Data availability

Coordinates and structure factors have been deposited with the PDB under Accession Code 6TL2

The following data sets were generated

Article and author information

Author details

  1. Cristina Manatschal

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    For correspondence
    c.manatschal@bioc.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
  2. Jonai Pujol-Giménez

    Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9951-1390
  3. Marion Poirier

    Department of Chemistry and Biochemisty, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Louis Reymond

    Department of Chemistry and Biochemisty, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthias A Hediger

    Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Raimund Dutzler

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    For correspondence
    dutzler@bioc.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2193-6129

Funding

Swiss National Science Foundation (NCCR TransCure)

  • Jean-Louis Reymond
  • Matthias A Hediger
  • Raimund Dutzler

Swiss National Science Foundation (SNF grant 310030_182272)

  • Matthias A Hediger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. László Csanády, Semmelweis University, Hungary

Publication history

  1. Received: September 16, 2019
  2. Accepted: November 22, 2019
  3. Accepted Manuscript published: December 5, 2019 (version 1)
  4. Version of Record published: December 17, 2019 (version 2)

Copyright

© 2019, Manatschal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,213
    Page views
  • 219
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Jingxiang Li et al.
    Research Article Updated

    Autophagy acts as a pivotal innate immune response against infection. Some virulence effectors subvert the host autophagic machinery to escape the surveillance of autophagy. The mechanism by which pathogens interact with host autophagy remains mostly unclear. However, traditional strategies often have difficulty identifying host proteins that interact with effectors due to the weak, dynamic, and transient nature of these interactions. Here, we found that Enteropathogenic Escherichia coli (EPEC) regulates autophagosome formation in host cells dependent on effector NleE. The 26S Proteasome Regulatory Subunit 10 (PSMD10) was identified as a direct interaction partner of NleE in living cells by employing genetically incorporated crosslinkers. Pairwise chemical crosslinking revealed that NleE interacts with the N-terminus of PSMD10. We demonstrated that PSMD10 homodimerization is necessary for its interaction with ATG7 and promotion of autophagy, but not necessary for PSMD10 interaction with ATG12. Therefore, NleE-mediated PSMD10 in monomeric state attenuates host autophagosome formation. Our study reveals the mechanism through which EPEC attenuates host autophagy activity.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Bence Hajdusits et al.
    Research Article

    In Gram-positive bacteria, the McsB protein arginine kinase is central to protein quality control, labelling aberrant molecules for degradation by the ClpCP protease. Despite its importance for stress response and pathogenicity, it is still elusive how the bacterial degradation labelling is regulated. Here, we delineate the mechanism how McsB targets aberrant proteins during stress conditions. Structural data reveal a self-compartmentalized kinase, in which the active sites are sequestered in a molecular cage. The 'closed' octamer interconverts with other oligomers in a phosphorylation-dependent manner and, contrary to these 'open' forms, preferentially labels unfolded proteins. In vivo data show that heat-shock triggers accumulation of higher-order oligomers, of which the octameric McsB is essential for surviving stress situations. The interconversion of open and closed oligomers represents a distinct regulatory mechanism of a degradation labeler, allowing the McsB kinase to adapt its potentially dangerous enzyme function to the needs of the bacterial cell.