Mechanistic basis of the inhibition of SLC11/NRAMP-mediated metal ion transport by bis-isothiourea substituted compounds

  1. Cristina Manatschal  Is a corresponding author
  2. Jonai Pujol-Giménez
  3. Marion Poirier
  4. Jean-Louis Reymond
  5. Matthias A Hediger
  6. Raimund Dutzler  Is a corresponding author
  1. University of Zürich, Switzerland
  2. University of Bern, Switzerland

Abstract

In humans, the divalent metal-ion transporter-1 (DMT1) mediates the transport of ferrous iron across the apical membrane of enterocytes. Hence, its inhibition could be beneficial for the treatment of iron overload disorders. Here we characterize the interaction of aromatic bis-isothiourea-substituted compounds with human DMT1 and its prokaryotic homologue EcoDMT. Both transporters are inhibited by a common competitive mechanism with potencies in the low micromolar range. The crystal structure of EcoDMT in complex with a brominated derivative defines the binding of the inhibitor to an extracellular pocket of the transporter in direct contact with residues of the metal ion coordination site, thereby interfering with substrate loading and locking the transporter in its outward-facing state. Mutagenesis and structure-activity relationships further support the observed interaction mode and reveal species-dependent differences between pro- and eukaryotic transporters. Together, our data provide the first detailed mechanistic insight into the pharmacology of SLC11/NRAMP transporters.

Data availability

Coordinates and structure factors have been deposited with the PDB under Accession Code 6TL2

The following data sets were generated

Article and author information

Author details

  1. Cristina Manatschal

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    For correspondence
    c.manatschal@bioc.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
  2. Jonai Pujol-Giménez

    Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9951-1390
  3. Marion Poirier

    Department of Chemistry and Biochemisty, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Louis Reymond

    Department of Chemistry and Biochemisty, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthias A Hediger

    Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Raimund Dutzler

    Department of Biochemistry, University of Zürich, Zürich, Switzerland
    For correspondence
    dutzler@bioc.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2193-6129

Funding

Swiss National Science Foundation (NCCR TransCure)

  • Jean-Louis Reymond
  • Matthias A Hediger
  • Raimund Dutzler

Swiss National Science Foundation (SNF grant 310030_182272)

  • Matthias A Hediger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Manatschal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,975
    views
  • 307
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cristina Manatschal
  2. Jonai Pujol-Giménez
  3. Marion Poirier
  4. Jean-Louis Reymond
  5. Matthias A Hediger
  6. Raimund Dutzler
(2019)
Mechanistic basis of the inhibition of SLC11/NRAMP-mediated metal ion transport by bis-isothiourea substituted compounds
eLife 8:e51913.
https://doi.org/10.7554/eLife.51913

Share this article

https://doi.org/10.7554/eLife.51913

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.