Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm

  1. Xiaoguo Zhang
  2. Xinxin Ding
  3. Richard Scott Marshall
  4. Julio Paez-Valencia
  5. Patrick Lacey
  6. Richard David Vierstra
  7. Marisa Otegui  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. Washington University in St Louis, United States

Abstract

Reticulon (Rtn) proteins shape tubular domains of the endoplasmic reticulum (ER), and in some cases are autophagy receptors for selective ER turnover. We have found that maize Rtn1 and Rtn2 control ER homeostasis and autophagic flux in endosperm aleurone cells, where the ER accumulates lipid droplets and synthesizes storage protein accretions metabolized during germination. Maize Rtn1 and Rtn2 are expressed in the endosperm, localize to the ER, and re-model ER architecture in a dose-dependent manner. Rtn1 and Rtn2 interact with Atg8a using four Atg8-interacting motifs (AIMs) located at the C-terminus, cytoplasmic loop, and within the transmembrane segments. Binding between Rtn2 and Atg8 is elevated upon ER stress. Maize rtn2 mutants display increased autophagy and up-regulation of an ER stress-responsive chaperone. We propose that maize Rtn1 and Rtn2 act as receptors for autophagy-mediated ER turnover, and thus are critical for ER homeostasis and suppression of ER stress.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Xiaoguo Zhang

    Department of Botany, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xinxin Ding

    Department of Botany, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard Scott Marshall

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6844-1078
  4. Julio Paez-Valencia

    Department of Botany, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrick Lacey

    Department of Botany, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Richard David Vierstra

    Department of Biology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0210-3516
  7. Marisa Otegui

    Department of Botany, University of Wisconsin-Madison, Madison, United States
    For correspondence
    otegui@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4699-6950

Funding

National Science Foundation (IOS-1840687)

  • Marisa Otegui

Agriculture Hatch Act Formula Fund (WIS01791)

  • Marisa Otegui

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique C Bergmann, Stanford University, United States

Version history

  1. Received: September 16, 2019
  2. Accepted: February 2, 2020
  3. Accepted Manuscript published: February 3, 2020 (version 1)
  4. Version of Record published: February 27, 2020 (version 2)

Copyright

© 2020, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,359
    views
  • 663
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoguo Zhang
  2. Xinxin Ding
  3. Richard Scott Marshall
  4. Julio Paez-Valencia
  5. Patrick Lacey
  6. Richard David Vierstra
  7. Marisa Otegui
(2020)
Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm
eLife 9:e51918.
https://doi.org/10.7554/eLife.51918

Share this article

https://doi.org/10.7554/eLife.51918

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.