Abstract

Cell shape and cell-envelope integrity of bacteria are determined by the peptidoglycan cell wall. In rod-shaped Escherichia coli, two conserved sets of machinery are essential for cell-wall insertion in the cylindrical part of the cell: the Rod complex and the class-A penicillin-binding proteins (aPBPs). While the Rod complex governs rod-like cell shape, aPBP function is less well understood. aPBPs were previously hypothesized to either work in concert with the Rod complex or to independently repair cell-wall defects. First, we demonstrate through modulation of enzyme levels that aPBPs do not contribute to rod-like cell shape but are required for mechanical stability, supporting their independent activity. By combining measurements of cell-wall stiffness, cell-wall insertion, and PBP1b motion at the single-molecule level we then present evidence that PBP1b, the major aPBP, contributes to cell-wall integrity by repairing cell wall defects.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files or deposited on Dryad. Source data files have been provided for Figures 1-4.Dryad datasets:Tracking data Tracking.zip: https://doi.org/10.5061/dryad.m37pvmcxq.SDS-Page raw images: https://doi.org/10.5061/dryad.9s4mw6mb9

The following data sets were generated

Article and author information

Author details

  1. Antoine Vigouroux

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Baptiste Cordier

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrey Aristov

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura Alvarez

    Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Gizem Özbaykal

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Thibault Chaze

    Proteomics Platform, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Enno Rainer Oldewurtel

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Mariette Matondo

    Proteomics Platform, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Felipe Cava

    Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. David Bikard

    Synthetic Biology Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Sven van Teeffelen

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    For correspondence
    sven.vanteeffelen@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0877-1294

Funding

H2020 European Research Council (679980)

  • Sven van Teeffelen

Agence Nationale de la Recherche (ANR-10-LABX-62-IBEID)

  • Antoine Vigouroux
  • David Bikard
  • Sven van Teeffelen

Volkswagen Foundation

  • Sven van Teeffelen

Mairie de Paris (Emergence(s))

  • Sven van Teeffelen

H2020 European Research Council (677823)

  • David Bikard

Knut och Alice Wallenbergs Stiftelse

  • Felipe Cava

Swedish Research Council

  • Felipe Cava

Kempe Foundation

  • Felipe Cava

Laboratory for Molecular Infection Medicine Sweden

  • Felipe Cava

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jie Xiao, Johns Hopkins University, United States

Version history

  1. Received: September 18, 2019
  2. Accepted: January 4, 2020
  3. Accepted Manuscript published: January 6, 2020 (version 1)
  4. Version of Record published: February 5, 2020 (version 2)

Copyright

© 2020, Vigouroux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,903
    views
  • 687
    downloads
  • 102
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antoine Vigouroux
  2. Baptiste Cordier
  3. Andrey Aristov
  4. Laura Alvarez
  5. Gizem Özbaykal
  6. Thibault Chaze
  7. Enno Rainer Oldewurtel
  8. Mariette Matondo
  9. Felipe Cava
  10. David Bikard
  11. Sven van Teeffelen
(2020)
Class-A penicillin binding proteins do not contribute to cell shape but repair cell-wall defects
eLife 9:e51998.
https://doi.org/10.7554/eLife.51998

Share this article

https://doi.org/10.7554/eLife.51998

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.