1. Cell Biology
  2. Microbiology and Infectious Disease
Download icon

Class-A penicillin binding proteins do not contribute to cell shape but repair cell-wall defects

Research Article
  • Cited 32
  • Views 3,146
  • Annotations
Cite this article as: eLife 2020;9:e51998 doi: 10.7554/eLife.51998

Abstract

Cell shape and cell-envelope integrity of bacteria are determined by the peptidoglycan cell wall. In rod-shaped Escherichia coli, two conserved sets of machinery are essential for cell-wall insertion in the cylindrical part of the cell: the Rod complex and the class-A penicillin-binding proteins (aPBPs). While the Rod complex governs rod-like cell shape, aPBP function is less well understood. aPBPs were previously hypothesized to either work in concert with the Rod complex or to independently repair cell-wall defects. First, we demonstrate through modulation of enzyme levels that aPBPs do not contribute to rod-like cell shape but are required for mechanical stability, supporting their independent activity. By combining measurements of cell-wall stiffness, cell-wall insertion, and PBP1b motion at the single-molecule level we then present evidence that PBP1b, the major aPBP, contributes to cell-wall integrity by repairing cell wall defects.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files or deposited on Dryad. Source data files have been provided for Figures 1-4.Dryad datasets:Tracking data Tracking.zip: https://doi.org/10.5061/dryad.m37pvmcxq.SDS-Page raw images: https://doi.org/10.5061/dryad.9s4mw6mb9

The following data sets were generated

Article and author information

Author details

  1. Antoine Vigouroux

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Baptiste Cordier

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrey Aristov

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura Alvarez

    Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Gizem Özbaykal

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Thibault Chaze

    Proteomics Platform, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Enno Rainer Oldewurtel

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Mariette Matondo

    Proteomics Platform, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Felipe Cava

    Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. David Bikard

    Synthetic Biology Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Sven van Teeffelen

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    For correspondence
    sven.vanteeffelen@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0877-1294

Funding

H2020 European Research Council (679980)

  • Sven van Teeffelen

Agence Nationale de la Recherche (ANR-10-LABX-62-IBEID)

  • Antoine Vigouroux
  • David Bikard
  • Sven van Teeffelen

Volkswagen Foundation

  • Sven van Teeffelen

Mairie de Paris (Emergence(s))

  • Sven van Teeffelen

H2020 European Research Council (677823)

  • David Bikard

Knut och Alice Wallenbergs Stiftelse

  • Felipe Cava

Swedish Research Council

  • Felipe Cava

Kempe Foundation

  • Felipe Cava

Laboratory for Molecular Infection Medicine Sweden

  • Felipe Cava

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jie Xiao, Johns Hopkins University, United States

Publication history

  1. Received: September 18, 2019
  2. Accepted: January 4, 2020
  3. Accepted Manuscript published: January 6, 2020 (version 1)
  4. Version of Record published: February 5, 2020 (version 2)

Copyright

© 2020, Vigouroux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,146
    Page views
  • 531
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Shahzad S Khan et al.
    Research Advance Updated

    Activating LRRK2 mutations cause Parkinson’s disease, and pathogenic LRRK2 kinase interferes with ciliogenesis. Previously, we showed that cholinergic interneurons of the dorsal striatum lose their cilia in R1441C LRRK2 mutant mice (Dhekne et al., 2018). Here, we show that cilia loss is seen as early as 10 weeks of age in these mice and also in two other mouse strains carrying the most common human G2019S LRRK2 mutation. Loss of the PPM1H phosphatase that is specific for LRRK2-phosphorylated Rab GTPases yields the same cilia loss phenotype seen in mice expressing pathogenic LRRK2 kinase, strongly supporting a connection between Rab GTPase phosphorylation and cilia loss. Moreover, astrocytes throughout the striatum show a ciliation defect in all LRRK2 and PPM1H mutant models examined. Hedgehog signaling requires cilia, and loss of cilia in LRRK2 mutant rodents correlates with dysregulation of Hedgehog signaling as monitored by in situ hybridization of Gli1 and Gdnf transcripts. Dopaminergic neurons of the substantia nigra secrete a Hedgehog signal that is sensed in the striatum to trigger neuroprotection; our data support a model in which LRRK2 and PPM1H mutant mice show altered responses to critical Hedgehog signals in the nigrostriatal pathway.

    1. Cancer Biology
    2. Cell Biology
    Tomasz Radaszkiewicz et al.
    Research Article

    RNF43 is an E3 ubiquitin ligase and known negative regulator of WNT/β-catenin signaling. We demonstrate that RNF43 is also a regulator of noncanonical WNT5A-induced signaling in human cells. Analysis of the RNF43 interactome using BioID and immunoprecipitation showed that RNF43 can interact with the core receptor complex components dedicated to the noncanonical Wnt pathway such as ROR1, ROR2, VANGL1, and VANGL2. RNF43 triggers VANGL2 ubiquitination and proteasomal degradation and clathrin-dependent internalization of ROR1 receptor and inhibits ROR2 activation. These activities of RNF43 are physiologically relevant and block pro-metastatic WNT5A signaling in melanoma. RNF43 inhibits responses to WNT5A, which results in the suppression of invasive properties of melanoma cells. Furthermore, RNF43 prevented WNT5A-assisted development of resistance to BRAF V600E and MEK inhibitors. Next, RNF43 acted as melanoma suppressor and improved response to targeted therapies in vivo. In line with these findings, RNF43 expression decreases during melanoma progression and RNF43-low patients have a worse prognosis. We conclude that RNF43 is a newly discovered negative regulator of WNT5A-mediated biological responses that desensitizes cells to WNT5A.