Abstract

More than 135 million births occur each year; yet, the molecular underpinnings of human parturition in gestational tissues, and in particular the placenta, are still poorly understood. The placenta is a complex heterogeneous organ including cells of both maternal and fetal origin, and insults that disrupt the maternal-fetal dialogue could result in adverse pregnancy outcomes such as preterm birth. There is limited knowledge of the cell type composition and transcriptional activity of the placenta and its compartments during physiologic and pathologic parturition. To fill this knowledge gap, we used scRNA-seq to profile the placental villous tree, basal plate, and chorioamniotic membranes of women with or without labor at term and those with preterm labor. Significant differences in cell type composition and transcriptional profiles were found among placental compartments and across study groups. For the first time, two cell types were identified: 1) lymphatic endothelial decidual cells in the chorioamniotic membranes, and 2) non-proliferative interstitial cytotrophoblasts in the placental villi. Maternal macrophages from the chorioamniotic membranes displayed the largest differences in gene expression (e.g. NFKB1) in both processes of labor; yet, specific gene expression changes were also detected in preterm labor. Importantly, several placental scRNA-seq transcriptional signatures were modulated with advancing gestation in the maternal circulation, and specific immune cell type signatures were increased with labor at term (NK-cell and activated T-cell signatures) and with preterm labor (macrophage, monocyte, and activated T-cell signatures). Herein, we provide a catalogue of cell types and transcriptional profiles in the human placenta, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.

Data availability

Protected Human subjects data deposited in dbGaP phs001886.v1.p1Data from other sources detailed in manuscript

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Roger Pique-Regi

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    For correspondence
    rpique@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1262-2275
  2. Roberto Romero

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    For correspondence
    prbchiefstaff@med.wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4448-5121
  3. Adi L Tarca

    Department of Obstetrics and Gynecology, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Edward D Sendler

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yi Xu

    Department of Obstetrics and Gynecology, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Valeria Garcia-Flores

    Department of Obstetrics and Gynecology, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yaozhu Leng

    Department of Obstetrics and Gynecology, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Francesca Luca

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8252-9052
  9. Sonia S Hassan

    Department of Obstetrics and Gynecology, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nardhy Gomez-Lopez

    Department of Obstetrics and Gynecology, Wayne State University, Detroit, United States
    For correspondence
    ngomezlo@med.wayne.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (HHSN275201300006C)

  • Roberto Romero

Wayne State University (Perinatal Research Initiative)

  • Nardhy Gomez-Lopez

The funders had no role in study design, data collection and interpretation.

Reviewing Editor

  1. Stephen Parker, University of Michigan, United States

Ethics

Human subjects: The collection and use of human materials for research purposes were approved by the Institutional Review Boards of the Wayne State University School of Medicine 040302M1F. All participating women provided written informed consent prior to sample collection. Data sharing certification (dbGaP phs001886.v1.p1) is attached.

Version history

  1. Received: September 19, 2019
  2. Accepted: December 12, 2019
  3. Accepted Manuscript published: December 12, 2019 (version 1)
  4. Version of Record published: January 8, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 14,352
    views
  • 1,808
    downloads
  • 190
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roger Pique-Regi
  2. Roberto Romero
  3. Adi L Tarca
  4. Edward D Sendler
  5. Yi Xu
  6. Valeria Garcia-Flores
  7. Yaozhu Leng
  8. Francesca Luca
  9. Sonia S Hassan
  10. Nardhy Gomez-Lopez
(2019)
Single cell transcriptional signatures of the human placenta in term and preterm parturition
eLife 8:e52004.
https://doi.org/10.7554/eLife.52004

Share this article

https://doi.org/10.7554/eLife.52004

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Genetics and Genomics
    Can Hu, Xue-Ting Zhu ... Jin-Qiu Zhou
    Research Article

    Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker’s yeast Saccharomyces cerevisiae, the X- and Y’-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y’-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y’-elements) in telomere maintenance. Deletion of Y’-elements (SY12), X-elements (SY12XYΔ+Y), or both X- and Y’-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y’-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.