Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants
Abstract
In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the surface but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes.
Data availability
Source data files have been provided for Figures 1, 2, 3, and 5
Article and author information
Author details
Funding
H2020 European Research Council (742985)
- Madhumitha Narasimhan
- Jiří Friml
Austrian Science Fund (I3630B25)
- Alexander Johnson
- Jiří Friml
European Molecular Biology Organization (ALTF 723-2015)
- Shutang Tan
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Narasimhan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,351
- views
-
- 782
- downloads
-
- 90
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.