Abstract

Intracellular transport is predominantly heterogeneous in both time and space, exhibiting varying non-Brownian behavior. Characterization of this movement through averaging methods over an ensemble of trajectories or over the course of a single trajectory often fails to capture this heterogeneity. Here, we developed a deep learning feedforward neural network trained on fractional Brownian motion, providing a novel, accurate and efficient method for resolving heterogeneous behavior of intracellular transport in space and time. The neural network requires significantly fewer data points compared to established methods. This enables robust estimation of Hurst exponents for very short time series data, making possible direct, dynamic segmentation and analysis of experimental tracks of rapidly moving cellular structures such as endosomes and lysosomes. By using this analysis, fractional Brownian motion with a stochastic Hurst exponent was used to interpret, for the first time, anomalous intracellular dynamics, revealing unexpected differences in behavior between closely related endocytic organelles.

Data availability

Supporting files are on GitHub and Zenodo.

The following data sets were generated
    1. Daniel Han
    (2019) hurst-exp
    Github, dadanhan/hurst-exp.git.

Article and author information

Author details

  1. Daniel Han

    Department of Mathematics, School of Biological Sciences, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
    For correspondence
    daniel.han@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9088-1651
  2. Nickolay Korabel

    Mathematics, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Runze Chen

    Department of Computer Science, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark Johnston

    School of Biological Sciences, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Gavrilova

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Victoria J Allan

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    For correspondence
    viki.allan@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4583-0836
  7. Sergei Fedotov

    Department of Mathematics, University of Manchester, Manchester, United Kingdom
    For correspondence
    sergei.fedotov@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas A Waigh

    Physics and Astronomy, University of Manchester, Manchester, United Kingdom
    For correspondence
    t.a.waigh@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7084-559X

Funding

Wellcome Trust (215189/Z/19/Z)

  • Daniel Han

EPSRC (EP/J019526/1)

  • Nickolay Korabel
  • Victoria J Allan
  • Sergei Fedotov
  • Thomas A Waigh

BBSRC (BB/H017828/1)

  • Victoria J Allan

Wellcome Trust (108867/Z/15/Z)

  • Anna Gavrilova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,958
    views
  • 313
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Han
  2. Nickolay Korabel
  3. Runze Chen
  4. Mark Johnston
  5. Anna Gavrilova
  6. Victoria J Allan
  7. Sergei Fedotov
  8. Thomas A Waigh
(2020)
Deciphering anomalous heterogeneous intracellular transport with neural networks
eLife 9:e52224.
https://doi.org/10.7554/eLife.52224

Share this article

https://doi.org/10.7554/eLife.52224

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.