Abstract

Intracellular transport is predominantly heterogeneous in both time and space, exhibiting varying non-Brownian behavior. Characterization of this movement through averaging methods over an ensemble of trajectories or over the course of a single trajectory often fails to capture this heterogeneity. Here, we developed a deep learning feedforward neural network trained on fractional Brownian motion, providing a novel, accurate and efficient method for resolving heterogeneous behavior of intracellular transport in space and time. The neural network requires significantly fewer data points compared to established methods. This enables robust estimation of Hurst exponents for very short time series data, making possible direct, dynamic segmentation and analysis of experimental tracks of rapidly moving cellular structures such as endosomes and lysosomes. By using this analysis, fractional Brownian motion with a stochastic Hurst exponent was used to interpret, for the first time, anomalous intracellular dynamics, revealing unexpected differences in behavior between closely related endocytic organelles.

Data availability

Supporting files are on GitHub and Zenodo.

The following data sets were generated
    1. Daniel Han
    (2019) hurst-exp
    Github, dadanhan/hurst-exp.git.

Article and author information

Author details

  1. Daniel Han

    Department of Mathematics, School of Biological Sciences, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
    For correspondence
    daniel.han@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9088-1651
  2. Nickolay Korabel

    Mathematics, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Runze Chen

    Department of Computer Science, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark Johnston

    School of Biological Sciences, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Gavrilova

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Victoria J Allan

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    For correspondence
    viki.allan@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4583-0836
  7. Sergei Fedotov

    Department of Mathematics, University of Manchester, Manchester, United Kingdom
    For correspondence
    sergei.fedotov@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas A Waigh

    Physics and Astronomy, University of Manchester, Manchester, United Kingdom
    For correspondence
    t.a.waigh@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7084-559X

Funding

Wellcome Trust (215189/Z/19/Z)

  • Daniel Han

EPSRC (EP/J019526/1)

  • Nickolay Korabel
  • Victoria J Allan
  • Sergei Fedotov
  • Thomas A Waigh

BBSRC (BB/H017828/1)

  • Victoria J Allan

Wellcome Trust (108867/Z/15/Z)

  • Anna Gavrilova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,970
    views
  • 315
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Han
  2. Nickolay Korabel
  3. Runze Chen
  4. Mark Johnston
  5. Anna Gavrilova
  6. Victoria J Allan
  7. Sergei Fedotov
  8. Thomas A Waigh
(2020)
Deciphering anomalous heterogeneous intracellular transport with neural networks
eLife 9:e52224.
https://doi.org/10.7554/eLife.52224

Share this article

https://doi.org/10.7554/eLife.52224

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    2. Medicine
    Yongli Qin, Jumpei Shirakawa ... Baohong Zhao
    Research Article

    The IncRNA Malat1 was initially believed to be dispensable for physiology due to the lack of observable phenotypes in Malat1 knockout (KO) mice. However, our study challenges this conclusion. We found that both Malat1 KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis. Mechanistically, Malat1 acts as an intrinsic regulator in osteoblasts to promote osteogenesis. Interestingly, Malat1 does not directly affect osteoclastogenesis but inhibits osteoclastogenesis in a non-autonomous manner in vivo via integrating crosstalk between multiple cell types, including osteoblasts, osteoclasts, and chondrocytes. Our findings substantiate the existence of a novel remodeling network in which Malat1 serves as a central regulator by binding to β-catenin and functioning through the β-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In pathological conditions, Malat1 significantly promotes bone regeneration in fracture healing. Bone homeostasis and regeneration are crucial to well-being. Our discoveries establish a previous unrecognized paradigm model of Malat1 function in the skeletal system, providing novel mechanistic insights into how a lncRNA integrates cellular crosstalk and molecular networks to fine tune tissue homeostasis, remodeling and repair.