Abstract

Protein ubiquitination is a very diverse post-translational modification leading to protein degradation or delocalization, or altering protein activity. In Arabidopsis thaliana, two E3 ligases, BIG BROTHER (BB) and DA2, activate the latent peptidases DA1, DAR1 and DAR2 by mono-ubiquitination at multiple sites. Subsequently, these activated peptidases destabilize various positive regulators of growth. Here, we show that two ubiquitin-specific proteases, UBP12 and UBP13, deubiquitinate DA1, DAR1 and DAR2, hence reducing their peptidase activity. Overexpression of UBP12 or UBP13 strongly decreased leaf size and cell area, and resulted in lower ploidy levels. Mutants in which UBP12 and UBP13 were downregulated produced smaller leaves that contained fewer and smaller cells. Remarkably, neither UBP12 nor UBP13 were found to be cleavage substrates of the activated DA1. Our results therefore suggest that UBP12 and UBP13 work upstream of DA1, DAR1 and DAR2 to restrict their protease activity and hence fine-tune plant growth and development.

Data availability

All generated data is included in the data source files

Article and author information

Author details

  1. Hannes Vanhaeren

    VIB Center for Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, VIB/UGent, Zwijnaarde, Belgium
    For correspondence
    hahae@psb.vib-ugent.be
    Competing interests
    The authors declare that no competing interests exist.
  2. Ying Chen

    VIB Center for Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, VIB/UGent, Zwijnaarde, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Mattias Vermeersch

    Department of Plant Systems Biology, VIB/UGent, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Liesbeth De Milde

    Department of Plant Systems Biology, VIB/UGent, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Valerie De Vleeschhauwer

    VIB Center for Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, VIB/UGent, Zwijnaarde, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Annelore Natran

    VIB Center for Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, VIB/UGent, Zwijnaarde, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  7. Geert Persiau

    VIB Center for Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, VIB/UGent, Zwijnaarde, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Dominique Eeckhout

    VIB Center for Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, VIB/UGent, Zwijnaarde, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Geert De Jaeger

    Center for Plant Systems Biology, VIB/UGent, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  10. Kris Gevaert

    VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, VIB/UGent, Ghent, Belgium
    For correspondence
    kris.gevaert@vib-ugent.be
    Competing interests
    The authors declare that no competing interests exist.
  11. Dirk Inzé

    VIB Center for Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, VIB/UGent, Zwijnaarde, Belgium
    For correspondence
    dirk.inze@psb.vib-ugent.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3217-8407

Funding

Ghent University Bijzonder Onderzoeksfondsen (BOF08/01M00408)

  • Mattias Vermeersch

Ghent University Bijzonder Onderzoeksfondsen (01SC3117)

  • Ying Chen

Chinese Scholarship Council (201604910566)

  • Ying Chen

Research Foundation Flanders (12V0218N)

  • Hannes Vanhaeren

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Vanhaeren et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,171
    views
  • 766
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hannes Vanhaeren
  2. Ying Chen
  3. Mattias Vermeersch
  4. Liesbeth De Milde
  5. Valerie De Vleeschhauwer
  6. Annelore Natran
  7. Geert Persiau
  8. Dominique Eeckhout
  9. Geert De Jaeger
  10. Kris Gevaert
  11. Dirk Inzé
(2020)
UBP12 and UBP13 negatively regulate the activity of the ubiquitin-dependent peptidases DA1, DAR1 and DAR2
eLife 9:e52276.
https://doi.org/10.7554/eLife.52276

Share this article

https://doi.org/10.7554/eLife.52276

Further reading

    1. Plant Biology
    Hanbin Bao, Yanan Wang ... Yangrong Cao
    Research Article

    It is well documented that type-III effectors are required by Gram-negative pathogens to directly target different host cellular pathways to promote bacterial infection. However, in the context of legume–rhizobium symbiosis, the role of rhizobial effectors in regulating plant symbiotic pathways remains largely unexplored. Here, we show that NopT, a YopT-type cysteine protease of Sinorhizobium fredii NGR234 directly targets the plant’s symbiotic signaling pathway by associating with two Nod factor receptors (NFR1 and NFR5 of Lotus japonicus). NopT inhibits cell death triggered by co-expression of NFR1/NFR5 in Nicotiana benthamiana. Full-length NopT physically interacts with NFR1 and NFR5. NopT proteolytically cleaves NFR5 both in vitro and in vivo, but can be inactivated by NFR1 as a result of phosphorylation. NopT plays an essential role in mediating rhizobial infection in L. japonicus. Autocleaved NopT retains the ability to cleave NFR5 but no longer interacts with NFR1. Interestingly, genomes of certain Sinorhizobium species only harbor nopT genes encoding truncated proteins without the autocleavage site. These results reveal an intricate interplay between rhizobia and legumes, in which a rhizobial effector protease targets NFR5 to suppress symbiotic signaling. NFR1 appears to counteract this process by phosphorylating the effector. This discovery highlights the role of a bacterial effector in regulating a signaling pathway in plants and opens up the perspective of developing kinase-interacting proteases to fine-tune cellular signaling processes in general.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.