Presynaptic developmental plasticity allows robust sparse wiring of the Drosophila mushroom body

  1. Najia A Elkahlah
  2. Jackson A Rogow
  3. Maria Ahmed
  4. E Josie Clowney  Is a corresponding author
  1. University of Michigan, United States
  2. The Rockefeller University, United States

Abstract

In order to represent complex stimuli, principle neurons of associative learning regions receive combinatorial sensory inputs. Density of combinatorial innervation is theorized to determine the number of distinct stimuli that can be represented and distinguished from one another, with sparse innervation thought to optimize the complexity of representations in networks of limited size. How the convergence of combinatorial inputs to principle neurons of associative brain regions is established during development is unknown. Here, we explore the developmental patterning of sparse olfactory inputs to Kenyon cells of the Drosophila melanogaster mushroom body. By manipulating the ratio between pre- and post-synaptic cells, we find that postsynaptic Kenyon cells set convergence ratio: Kenyon cells produce fixed distributions of dendritic claws while presynaptic processes are plastic. Moreover, we show that sparse odor responses are preserved in mushroom bodies with reduced cellular repertoires, suggesting that developmental specification of convergence ratio allows functional robustness.

Data availability

Analyzed data points generated during the study are included in the figures. Source data for Figure 7 is presented in a source data file.

Article and author information

Author details

  1. Najia A Elkahlah

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jackson A Rogow

    Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria Ahmed

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. E Josie Clowney

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    For correspondence
    jclowney@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9150-9464

Funding

Rita Allen Foundation (Milton Cassel Scholar)

  • E Josie Clowney

Alfred P. Sloan Foundation (Research Fellow in Neuroscience)

  • E Josie Clowney

University of Michigan (Startup Funds)

  • E Josie Clowney

University of Michigan (Neuroscience Scholar Award)

  • E Josie Clowney

Helen Hay Whitney Foundation (Simons Fellow)

  • E Josie Clowney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Elkahlah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,156
    views
  • 608
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.52278

Further reading

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.