Presynaptic developmental plasticity allows robust sparse wiring of the Drosophila mushroom body

  1. Najia A Elkahlah
  2. Jackson A Rogow
  3. Maria Ahmed
  4. E Josie Clowney  Is a corresponding author
  1. University of Michigan, United States
  2. The Rockefeller University, United States

Abstract

In order to represent complex stimuli, principle neurons of associative learning regions receive combinatorial sensory inputs. Density of combinatorial innervation is theorized to determine the number of distinct stimuli that can be represented and distinguished from one another, with sparse innervation thought to optimize the complexity of representations in networks of limited size. How the convergence of combinatorial inputs to principle neurons of associative brain regions is established during development is unknown. Here, we explore the developmental patterning of sparse olfactory inputs to Kenyon cells of the Drosophila melanogaster mushroom body. By manipulating the ratio between pre- and post-synaptic cells, we find that postsynaptic Kenyon cells set convergence ratio: Kenyon cells produce fixed distributions of dendritic claws while presynaptic processes are plastic. Moreover, we show that sparse odor responses are preserved in mushroom bodies with reduced cellular repertoires, suggesting that developmental specification of convergence ratio allows functional robustness.

Data availability

Analyzed data points generated during the study are included in the figures. Source data for Figure 7 is presented in a source data file.

Article and author information

Author details

  1. Najia A Elkahlah

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jackson A Rogow

    Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria Ahmed

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. E Josie Clowney

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    For correspondence
    jclowney@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9150-9464

Funding

Rita Allen Foundation (Milton Cassel Scholar)

  • E Josie Clowney

Alfred P. Sloan Foundation (Research Fellow in Neuroscience)

  • E Josie Clowney

University of Michigan (Startup Funds)

  • E Josie Clowney

University of Michigan (Neuroscience Scholar Award)

  • E Josie Clowney

Helen Hay Whitney Foundation (Simons Fellow)

  • E Josie Clowney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claude Desplan, New York University, United States

Version history

  1. Received: September 28, 2019
  2. Accepted: January 7, 2020
  3. Accepted Manuscript published: January 8, 2020 (version 1)
  4. Version of Record published: February 18, 2020 (version 2)

Copyright

© 2020, Elkahlah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,848
    views
  • 584
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Najia A Elkahlah
  2. Jackson A Rogow
  3. Maria Ahmed
  4. E Josie Clowney
(2020)
Presynaptic developmental plasticity allows robust sparse wiring of the Drosophila mushroom body
eLife 9:e52278.
https://doi.org/10.7554/eLife.52278

Share this article

https://doi.org/10.7554/eLife.52278

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.