An advanced cell cycle tag toolbox reveals principles underlying temporal control of structure-selective nucleases

  1. Julia Bittmann
  2. Rokas Grigaitis
  3. Lorenzo Galanti
  4. Silas Amarell
  5. Florian Wilfling
  6. Joao Matos
  7. Boris Pfander  Is a corresponding author
  1. Max Planck Institute of Biochemistry, Germany
  2. ETH Zurich, Switzerland
  3. ETH Zürich, Switzerland

Abstract

Cell cycle tags allow to restrict target protein expression to specific cell cycle phases. Here, we present an advanced toolbox of cell cycle tag constructs in budding yeast with defined and compatible peak expression that allow comparison of protein functionality at different cell cycle phases. We apply this technology to the question of how and when Mus81-Mms4 and Yen1 nucleases act on DNA replication or recombination structures. Restriction of Mus81-Mms4 to M phase but not S phase allows a wildtype response to various forms of replication perturbation and DNA damage in S phase, suggesting it acts as a post-replicative resolvase. Moreover, we use cell cycle tags to reinstall cell cycle control to a deregulated version of Yen1, showing that its premature activation interferes with the response to perturbed replication. Curbing resolvase activity and establishing a hierarchy of resolution mechanisms are therefore the principal reasons underlying resolvase cell cycle regulation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Julia Bittmann

    DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6527-7383
  2. Rokas Grigaitis

    Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Lorenzo Galanti

    DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2538-3581
  4. Silas Amarell

    DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Florian Wilfling

    Molecular Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Joao Matos

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3754-3709
  7. Boris Pfander

    DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    bpfander@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2180-5054

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

  • Joao Matos

Eidgenössische Technische Hochschule Zürich

  • Joao Matos

Max-Planck-Gesellschaft

  • Boris Pfander

Deutsche Forschungsgemeinschaft

  • Boris Pfander

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bernard de Massy, CNRS UM, France

Version history

  1. Received: October 4, 2019
  2. Accepted: April 29, 2020
  3. Accepted Manuscript published: April 30, 2020 (version 1)
  4. Accepted Manuscript updated: May 1, 2020 (version 2)
  5. Version of Record published: May 13, 2020 (version 3)

Copyright

© 2020, Bittmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,768
    Page views
  • 386
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia Bittmann
  2. Rokas Grigaitis
  3. Lorenzo Galanti
  4. Silas Amarell
  5. Florian Wilfling
  6. Joao Matos
  7. Boris Pfander
(2020)
An advanced cell cycle tag toolbox reveals principles underlying temporal control of structure-selective nucleases
eLife 9:e52459.
https://doi.org/10.7554/eLife.52459

Share this article

https://doi.org/10.7554/eLife.52459

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.