Navigating the garden of forking paths for data exclusions in fear conditioning research

  1. Tina B Lonsdorf  Is a corresponding author
  2. Maren Klingelhöfer-Jens
  3. Marta Andreatta
  4. Tom Beckers
  5. Anastasia Chalkia
  6. Anna Gerlicher
  7. Valerie L Jentsch
  8. Shira Meir Drexler
  9. Gaetan Mertens
  10. Jan Richter
  11. Rachel Sjouwerman
  12. Julia Wendt
  13. Christian Josef Merz
  1. University Medical Center Hamburg-Eppendorf, Germany
  2. University of Würzburg, Germany
  3. KU Leuven, Belgium
  4. University of Amsterdam, Netherlands
  5. Ruhr University Bochum, Germany
  6. Utrecht University, Netherlands
  7. University of Greifswald, Germany

Abstract

In this report, we illustrate the considerable impact of researcher degrees of freedom with respect to exclusion of participants in paradimgs with a learning element. We illustrate this empirically through case examples from human fear conditioning research where the exclusion of 'non-learners' and 'non-responders' is common - despite a lack of consensus on how to define these groups. We illustrate the substantial heterogeneity in exclusion criteria based on a systematic literature search and highlight potential problems and pitfalls of different definitions through case examples based on re-analyses of existing data sets. Based on this, we propose a consensus on evidence-based rather than idiosyncratic criteria including clear guidelines on reporting details. Taken together, we illustrate how flexibility in data collection and analysis can be avoided, which will benefit the robustness and replicability of research findings and can be expected to be applicable to other fields of research that involve a learning element.

Data availability

The minimal data sets (data set 1 and data set 2, both represent re-analysis of existing data), which were analysed during the current study, as well as code for figure production are are available at OSF under https://osf.io/mkxqe/ and DOI 10.17605/OSF.IO/MKXQE.

The following data sets were generated
    1. Lonsdorf et al
    (2019) Data_and_code_dataset1
    Open Science Framework, w9y8z.
    1. Lonsdorf et al
    (2019) Data_and_code_dataset1
    Open Science Framework, 7c5ag.

Article and author information

Author details

  1. Tina B Lonsdorf

    Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    t.lonsdorf@uke.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1501-4846
  2. Maren Klingelhöfer-Jens

    Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marta Andreatta

    Department of Psychology, Biological Psychology,Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1217-8266
  4. Tom Beckers

    Centre for the Psychology of Learning and Experimental Psychopathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9581-1505
  5. Anastasia Chalkia

    Centre for the Psychology of Learning and Experimental Psychopathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1613-2281
  6. Anna Gerlicher

    Faculty of Social and Behavioural Sciences, Programme group Clinical Psychology, University of Amsterdam, the Netherlands, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Valerie L Jentsch

    Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9318-9540
  8. Shira Meir Drexler

    Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8797-6900
  9. Gaetan Mertens

    Department of Psychology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Jan Richter

    Department of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7127-6990
  11. Rachel Sjouwerman

    Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Julia Wendt

    Department of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifwald, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2299-5881
  13. Christian Josef Merz

    Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5679-6595

Funding

Deutsche Forschungsgemeinschaft (LO 1980/2-1)

  • Tina B Lonsdorf

Deutsche Forschungsgemeinschaft (LO 1980/1-1)

  • Tina B Lonsdorf
  • Rachel Sjouwerman

Deutsche Forschungsgemeinschaft (44541416)

  • Tina B Lonsdorf

Deutsche Forschungsgemeinschaft (316803389)

  • Christian Josef Merz

Deutsche Forschungsgemeinschaft (WE 5873/1-1)

  • Julia Wendt

Deutsche Forschungsgemeinschaft (WE 5873/5-1)

  • Julia Wendt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alexander Shackman, University of Maryland, United States

Ethics

Human subjects: Study 1: All participants gave written informed consent to the protocol which was approved by the local ethics committee (PV 5157, Ethics Committee of the General Medical Council Hamburg).Study 2: All participants gave written informed consent to the protocol which was approved by the Ethical Review Board of the German Psychological Association (TL072015).

Version history

  1. Received: October 4, 2019
  2. Accepted: December 16, 2019
  3. Accepted Manuscript published: December 16, 2019 (version 1)
  4. Version of Record published: January 29, 2020 (version 2)

Copyright

© 2019, Lonsdorf et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,462
    views
  • 421
    downloads
  • 98
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tina B Lonsdorf
  2. Maren Klingelhöfer-Jens
  3. Marta Andreatta
  4. Tom Beckers
  5. Anastasia Chalkia
  6. Anna Gerlicher
  7. Valerie L Jentsch
  8. Shira Meir Drexler
  9. Gaetan Mertens
  10. Jan Richter
  11. Rachel Sjouwerman
  12. Julia Wendt
  13. Christian Josef Merz
(2019)
Navigating the garden of forking paths for data exclusions in fear conditioning research
eLife 8:e52465.
https://doi.org/10.7554/eLife.52465

Share this article

https://doi.org/10.7554/eLife.52465

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.