Postural control of arm and fingers through integration of movement commands

  1. Scott T Albert  Is a corresponding author
  2. Alkis M Hadjiosif
  3. Jihoon Jang
  4. Andrew J Zimnik
  5. Demetris S Soteropoulos
  6. Stuart N Baker
  7. Mark M Churchland
  8. John W Krakauer
  9. Reza Shadmehr  Is a corresponding author
  1. Johns Hopkins School of Medicine, United States
  2. Columbia University Medical Center, United States
  3. Newcastle University, United Kingdom

Abstract

Every movement ends in a period of stillness. Current models assume that commands that hold the limb at a target location do not depend on the commands that moved the limb to that location. Here, we report a surprising relationship between movement and posture in primates: on a within-trial basis, the commands that hold the arm and finger at a target location depend on the mathematical integration of the commands that moved the limb to that location. Following damage to the corticospinal tract, both the move and hold period commands become more variable. However, the hold period commands retain their dependence on the integral of the move period commands. Thus, our data suggest that the postural controller possesses a feedforward module that uses move commands to calculate a component of hold commands. This computation may arise within an unknown subcortical system that integrates cortical commands to stabilize limb posture.

Data availability

Source data files generated or analyzed during this study are included for Figures 1-7 and have also been deposited in OSF under accession code YC64A.

The following data sets were generated

Article and author information

Author details

  1. Scott T Albert

    Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, United States
    For correspondence
    scottalbert1@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9140-1077
  2. Alkis M Hadjiosif

    Department of Neurology, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jihoon Jang

    Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew J Zimnik

    Department of Neuroscience, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Demetris S Soteropoulos

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Stuart N Baker

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark M Churchland

    Department of Neuroscience, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9123-6526
  8. John W Krakauer

    Department of Neurology, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4316-1846
  9. Reza Shadmehr

    Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, United States
    For correspondence
    shadmehr@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7686-2569

Funding

National Institute of Neurological Disorders and Stroke (R01NS078311)

  • Reza Shadmehr

Sheikh Khalifa Stroke Institute

  • John W Krakauer

Medical Research Council (MR/K023012/1)

  • Demetris S Soteropoulos

National Institute of Neurological Disorders and Stroke (1DP2NS083037)

  • Mark M Churchland

National Institute of Neurological Disorders and Stroke (R01NS100066)

  • Mark M Churchland

National Institute of Neurological Disorders and Stroke (1U19NS104649)

  • Mark M Churchland

National Institute of Neurological Disorders and Stroke (F31NS095706)

  • Scott T Albert

National Institute of Neurological Disorders and Stroke (F32NS092350)

  • Mark M Churchland

National Science Foundation (1723967)

  • Reza Shadmehr

Simons Foundation (SCGB#542957)

  • Mark M Churchland

Medical Research Council (MR/P023967)

  • Stuart N Baker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kunlin Wei, Peking University, China

Ethics

Animal experimentation: All animal procedures in the U.S. were conducted in accord with the US National Institutes of Health guidelines and were approved by the Columbia University Institutional Animal Care and Use Committee (AC-AAAQ7409). These data were originally published in Lara, Cunningham, & Churchland (2018) as well as Lara, Elsayed, Zimnik, Cunningham, & Churchland (2018). All procedures in the U.K. were carried out under appropriate UK Home Office licenses in accordance with the Animals (Scientific Procedures) Act 1986, and were approved by the Local Research Ethics Committee of Newcastle University. These data were originally published in Soteropoulos, Williams, & Baker (2012).

Human subjects: Informed consent was obtained from all participants. All human subjects work was approved by the Johns Hopkins School of Medicine Institutional Review Board, protocol number NA_00037510.

Version history

  1. Received: October 6, 2019
  2. Accepted: February 3, 2020
  3. Accepted Manuscript published: February 11, 2020 (version 1)
  4. Version of Record published: March 9, 2020 (version 2)

Copyright

© 2020, Albert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,793
    Page views
  • 597
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Scott T Albert
  2. Alkis M Hadjiosif
  3. Jihoon Jang
  4. Andrew J Zimnik
  5. Demetris S Soteropoulos
  6. Stuart N Baker
  7. Mark M Churchland
  8. John W Krakauer
  9. Reza Shadmehr
(2020)
Postural control of arm and fingers through integration of movement commands
eLife 9:e52507.
https://doi.org/10.7554/eLife.52507

Share this article

https://doi.org/10.7554/eLife.52507

Further reading

    1. Neuroscience
    Daniel R Schonhaut, Aditya M Rao ... Michael J Kahana
    Research Article Updated

    Memory formation depends on neural activity across a network of regions, including the hippocampus and broader medial temporal lobe (MTL). Interactions between these regions have been studied indirectly using functional MRI, but the bases for interregional communication at a cellular level remain poorly understood. Here, we evaluate the hypothesis that oscillatory currents in the hippocampus synchronize the firing of neurons both within and outside the hippocampus. We recorded extracellular spikes from 1854 single- and multi-units simultaneously with hippocampal local field potentials (LFPs) in 28 neurosurgical patients who completed virtual navigation experiments. A majority of hippocampal neurons phase-locked to oscillations in the slow (2–4 Hz) or fast (6–10 Hz) theta bands, with a significant subset exhibiting nested slow theta × beta frequency (13–20 Hz) phase-locking. Outside of the hippocampus, phase-locking to hippocampal oscillations occurred only at theta frequencies and primarily among neurons in the entorhinal cortex and amygdala. Moreover, extrahippocampal neurons phase-locked to hippocampal theta even when theta did not appear locally. These results indicate that spike-time synchronization with hippocampal theta is a defining feature of neuronal activity in the hippocampus and structurally connected MTL regions. Theta phase-locking could mediate flexible communication with the hippocampus to influence the content and quality of memories.

    1. Developmental Biology
    2. Neuroscience
    Sergi Llambrich, Birger Tielemans ... Greetje Vande Velde
    Research Article

    Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.