Postural control of arm and fingers through integration of movement commands

  1. Scott T Albert  Is a corresponding author
  2. Alkis M Hadjiosif
  3. Jihoon Jang
  4. Andrew J Zimnik
  5. Demetris S Soteropoulos
  6. Stuart N Baker
  7. Mark M Churchland
  8. John W Krakauer
  9. Reza Shadmehr  Is a corresponding author
  1. Johns Hopkins School of Medicine, United States
  2. Columbia University Medical Center, United States
  3. Newcastle University, United Kingdom

Abstract

Every movement ends in a period of stillness. Current models assume that commands that hold the limb at a target location do not depend on the commands that moved the limb to that location. Here, we report a surprising relationship between movement and posture in primates: on a within-trial basis, the commands that hold the arm and finger at a target location depend on the mathematical integration of the commands that moved the limb to that location. Following damage to the corticospinal tract, both the move and hold period commands become more variable. However, the hold period commands retain their dependence on the integral of the move period commands. Thus, our data suggest that the postural controller possesses a feedforward module that uses move commands to calculate a component of hold commands. This computation may arise within an unknown subcortical system that integrates cortical commands to stabilize limb posture.

Data availability

Source data files generated or analyzed during this study are included for Figures 1-7 and have also been deposited in OSF under accession code YC64A.

The following data sets were generated

Article and author information

Author details

  1. Scott T Albert

    Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, United States
    For correspondence
    scottalbert1@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9140-1077
  2. Alkis M Hadjiosif

    Department of Neurology, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jihoon Jang

    Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew J Zimnik

    Department of Neuroscience, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Demetris S Soteropoulos

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Stuart N Baker

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark M Churchland

    Department of Neuroscience, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9123-6526
  8. John W Krakauer

    Department of Neurology, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4316-1846
  9. Reza Shadmehr

    Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, United States
    For correspondence
    shadmehr@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7686-2569

Funding

National Institute of Neurological Disorders and Stroke (R01NS078311)

  • Reza Shadmehr

Sheikh Khalifa Stroke Institute

  • John W Krakauer

Medical Research Council (MR/K023012/1)

  • Demetris S Soteropoulos

National Institute of Neurological Disorders and Stroke (1DP2NS083037)

  • Mark M Churchland

National Institute of Neurological Disorders and Stroke (R01NS100066)

  • Mark M Churchland

National Institute of Neurological Disorders and Stroke (1U19NS104649)

  • Mark M Churchland

National Institute of Neurological Disorders and Stroke (F31NS095706)

  • Scott T Albert

National Institute of Neurological Disorders and Stroke (F32NS092350)

  • Mark M Churchland

National Science Foundation (1723967)

  • Reza Shadmehr

Simons Foundation (SCGB#542957)

  • Mark M Churchland

Medical Research Council (MR/P023967)

  • Stuart N Baker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures in the U.S. were conducted in accord with the US National Institutes of Health guidelines and were approved by the Columbia University Institutional Animal Care and Use Committee (AC-AAAQ7409). These data were originally published in Lara, Cunningham, & Churchland (2018) as well as Lara, Elsayed, Zimnik, Cunningham, & Churchland (2018). All procedures in the U.K. were carried out under appropriate UK Home Office licenses in accordance with the Animals (Scientific Procedures) Act 1986, and were approved by the Local Research Ethics Committee of Newcastle University. These data were originally published in Soteropoulos, Williams, & Baker (2012).

Human subjects: Informed consent was obtained from all participants. All human subjects work was approved by the Johns Hopkins School of Medicine Institutional Review Board, protocol number NA_00037510.

Copyright

© 2020, Albert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Scott T Albert
  2. Alkis M Hadjiosif
  3. Jihoon Jang
  4. Andrew J Zimnik
  5. Demetris S Soteropoulos
  6. Stuart N Baker
  7. Mark M Churchland
  8. John W Krakauer
  9. Reza Shadmehr
(2020)
Postural control of arm and fingers through integration of movement commands
eLife 9:e52507.
https://doi.org/10.7554/eLife.52507

Share this article

https://doi.org/10.7554/eLife.52507

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.