Linker histone H1.2 and H1.4 affect the neutrophil lineage determination

  1. Gabriel Sollberger  Is a corresponding author
  2. Robert Streeck
  3. Falko Apel
  4. Brian Edward Caffrey
  5. Arthur I Skoultchi
  6. Arturo Zychlinsky
  1. University of Dundee, United Kingdom
  2. Max Planck Institute for Infection Biology, Germany
  3. Max Planck Institute for Molecular Genetics, Germany
  4. Albert Einstein College of Medicine, United States

Abstract

Neutrophils are important innate immune cells that tackle invading pathogens with different effector mechanisms. They acquire this antimicrobial potential during their maturation in the bone marrow, where they differentiate from hematopoietic stem cells in a process called granulopoiesis. Mature neutrophils are terminally differentiated and short-lived with a high turnover rate. Here, we show a critical role for linker histone H1 on the differentiation and function of neutrophils using a genome-wide CRISPR/Cas9 screen in the human cell line PLB-985. We systematically disrupted expression of somatic H1 subtypes to show that individual H1 subtypes affect PLB-985 maturation in opposite ways. Loss of H1.2 and H1.4 induced an eosinophil-like transcriptional program, thereby negatively regulating the differentiation into the neutrophil lineage. Importantly, H1 subtypes also affect neutrophil differentiation and the eosinophil-directed bias of murine bone marrow stem cells, demonstrating an unexpected subtype-specific role for H1 in granulopoiesis.

Data availability

RNA sequencing data have been deposited in ArrayExpress - accession no. E-MTAB-8459All data generated or analysed during this study are included in the manuscript and supplemental files. Source data files are provided for Figure 1 and Figure 4. A supplementary table with all used qPCR primers, sgRNA sequences, antibodies and other reagents is provided.

The following previously published data sets were used

Article and author information

Author details

  1. Gabriel Sollberger

    Cell Signalling and Immunology Division, University of Dundee, Dundee, United Kingdom
    For correspondence
    gsollberger001@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3647-9714
  2. Robert Streeck

    Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Falko Apel

    Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Brian Edward Caffrey

    Bioinformatics, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Arthur I Skoultchi

    Department of Cell Biology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Arturo Zychlinsky

    Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (P300P3_158518)

  • Gabriel Sollberger

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (P2EZP3_148748)

  • Gabriel Sollberger

Max-Planck-Gesellschaft

  • Robert Streeck
  • Brian Edward Caffrey
  • Arturo Zychlinsky

National Institute of General Medical Sciences (GM116143)

  • Arthur I Skoultchi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Breeding of mice and isolation of blood and bone marrow were approved by the Berlin state authority Landesamt für Gesundheit und Soziales. All mice were bred at the Max Planck Insitute for Infection Biology under specific pathogen-free conditions. Animals were maintained on a 12-hour light/12-hour dark cycle and fed ad libitum

Human subjects: Human primary neutrophils, PBMCs and monocytes were isolated from blood samples of healthy volunteers according to the declaration of Helsinki. All donors provided written informed consent and all blood samples were collected with approval from the local ethics committee.

Reviewing Editor

  1. Florent Ginhoux, Agency for Science Technology and Research, Singapore

Publication history

  1. Received: October 8, 2019
  2. Accepted: May 8, 2020
  3. Accepted Manuscript published: May 11, 2020 (version 1)
  4. Version of Record published: May 26, 2020 (version 2)
  5. Version of Record updated: May 27, 2020 (version 3)

Copyright

© 2020, Sollberger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,487
    Page views
  • 228
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriel Sollberger
  2. Robert Streeck
  3. Falko Apel
  4. Brian Edward Caffrey
  5. Arthur I Skoultchi
  6. Arturo Zychlinsky
(2020)
Linker histone H1.2 and H1.4 affect the neutrophil lineage determination
eLife 9:e52563.
https://doi.org/10.7554/eLife.52563

Further reading

    1. Developmental Biology
    2. Neuroscience
    Mariah L Hoye et al.
    Research Article

    Mutations in the RNA helicase, DDX3X, are a leading cause of Intellectual Disability and present as DDX3X syndrome, a neurodevelopmental disorder associated with cortical malformations and autism. Yet, the cellular and molecular mechanisms by which DDX3X controls cortical development are largely unknown. Here, using a mouse model of Ddx3x loss-of-function we demonstrate that DDX3X directs translational and cell cycle control of neural progenitors, which underlies precise corticogenesis. First, we show brain development is sensitive to Ddx3x dosage; complete Ddx3x loss from neural progenitors causes microcephaly in females, whereas hemizygous males and heterozygous females show reduced neurogenesis without marked microcephaly. In addition, Ddx3x loss is sexually dimorphic, as its paralog, Ddx3y, compensates for Ddx3x in the developing male neocortex. Using live imaging of progenitors, we show that DDX3X promotes neuronal generation by regulating both cell cycle duration and neurogenic divisions. Finally, we use ribosome profiling in vivo to discover the repertoire of translated transcripts in neural progenitors, including those which are DDX3X-dependent and essential for neurogenesis. Our study reveals invaluable new insights into the etiology of DDX3X syndrome, implicating dysregulated progenitor cell cycle dynamics and translation as pathogenic mechanisms.

    1. Developmental Biology
    2. Evolutionary Biology
    Mathi Thiruppathy et al.
    Short Report

    Whereas no known living vertebrate possesses gills derived from the jaw-forming mandibular arch, it has been proposed that the jaw arose through modifications of an ancestral mandibular gill. Here, we show that the zebrafish pseudobranch, which regulates blood pressure in the eye, develops from mandibular arch mesenchyme and first pouch epithelia and shares gene expression, enhancer utilization, and developmental gata3 dependence with the gills. Combined with work in chondrichthyans, our findings in a teleost fish point to the presence of a mandibular pseudobranch with serial homology to gills in the last common ancestor of jawed vertebrates, consistent with a gill origin of vertebrate jaws.