A sex difference in the response of the rodent postsynaptic density to synGAP haploinsufficiency

  1. Tara L Mastro  Is a corresponding author
  2. Anthony Preza
  3. Shinjini Basu
  4. Sumantra Chattarji
  5. Sally M Till
  6. Peter C Kind
  7. Mary B Kennedy  Is a corresponding author
  1. California Institute of Technology, United States
  2. University of Edinburgh, United Kingdom
  3. National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Abstract

SynGAP is a postsynaptic density (PSD) protein that binds to PDZ domains of the scaffold protein PSD-95. We previously reported that heterozygous deletion of Syngap1 in mice is correlated with increased steady-state levels of other key PSD proteins that bind PSD-95, although the level of PSD-95 remains constant (Walkup et al., 2016). For example, the ratio to PSD-95 of Transmembrane AMPA-Receptor-associated Proteins (TARPs), which mediate binding of AMPA-type glutamate receptors to PSD-95, was increased in young Syngap1+/- mice. Here we show that only females and not males show a highly significant correlation between an increase in TARP and a decrease in synGAP in the PSDs of Syngap1+/- rodents. The data reveal a sex difference in the adaptation of the PSD scaffold to synGAP haploinsufficiency.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Tara L Mastro

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    tmastro@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Anthony Preza

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shinjini Basu

    Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Sumantra Chattarji

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9962-3635
  5. Sally M Till

    Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter C Kind

    Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4256-9639
  7. Mary B Kennedy

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    kennedym@its.caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1369-0525

Funding

National Institute of Mental Health (MH15456)

  • Tara L Mastro
  • Anthony Preza
  • Mary B Kennedy

Allen and Lenabelle Davis Foundation (Professorship)

  • Mary B Kennedy

National Science Foundation (Postdoctoral Fellowship)

  • Tara L Mastro

Department of Biotechnology , Ministry of Science and Technology

  • Sumantra Chattarji
  • Peter C Kind

Simons Foundation (Grant 529085)

  • Peter C Kind

Patrick Wild Centre (Patrick Wild Centre)

  • Sally M Till
  • Peter C Kind

Medical Research Council (MR/P006213/1)

  • Sally M Till
  • Peter C Kind

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (1034-18) of California Institute of Technology.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Publication history

  1. Received: October 11, 2019
  2. Accepted: January 14, 2020
  3. Accepted Manuscript published: January 15, 2020 (version 1)
  4. Version of Record published: January 31, 2020 (version 2)

Copyright

© 2020, Mastro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,365
    Page views
  • 208
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tara L Mastro
  2. Anthony Preza
  3. Shinjini Basu
  4. Sumantra Chattarji
  5. Sally M Till
  6. Peter C Kind
  7. Mary B Kennedy
(2020)
A sex difference in the response of the rodent postsynaptic density to synGAP haploinsufficiency
eLife 9:e52656.
https://doi.org/10.7554/eLife.52656

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ryo Fujisawa et al.
    Research Article Updated

    The p97/Cdc48 ATPase and its ubiquitin receptors Ufd1-Npl4 are essential to unfold ubiquitylated proteins in many areas of eukaryotic cell biology. In yeast, Cdc48-Ufd1-Npl4 is controlled by a quality control mechanism, whereby substrates must be conjugated to at least five ubiquitins. Here, we show that mammalian p97-UFD1-NPL4 is governed by a complex interplay between additional p97 cofactors and the number of conjugated ubiquitins. Using reconstituted assays for the disassembly of ubiquitylated CMG (Cdc45-MCM-GINS) helicase by human p97-UFD1-NPL4, we show that the unfoldase has a high ubiquitin threshold for substrate unfolding, which can be reduced by the UBX proteins UBXN7, FAF1, or FAF2. Our data indicate that the UBX proteins function by binding to p97-UFD1-NPL4 and stabilising productive interactions between UFD1-NPL4 and K48-linked chains of at least five ubiquitins. Stimulation by UBXN7 is dependent upon known ubiquitin-binding motifs, whereas FAF1 and FAF2 use a previously uncharacterised coiled-coil domain to reduce the ubiquitin threshold of p97-UFD1-NPL4. We show that deleting the Ubnx7 and Faf1 genes impairs CMG disassembly during S-phase and mitosis and sensitises cells to reduced ubiquitin ligase activity. These findings indicate that multiple UBX proteins are important for the efficient unfolding of ubiquitylated proteins by p97-UFD1-NPL4 in mammalian cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Hwan Bae et al.
    Research Advance

    Akt is a Ser/Thr protein kinase that plays a central role in metabolism and cancer. Regulation of Akt's activity involves an autoinhibitory intramolecular interaction between its pleckstrin homology (PH) domain and its kinase domain that can be relieved by C-tail phosphorylation. PH domain mutant E17K Akt is a well-established oncogene. Previously, we reported that the conformation of autoinhibited Akt may be shifted by small molecule allosteric inhibitors limiting the mechanistic insights from existing X-ray structures that have relied on such compounds (Chu, Viennet, et al, 2020). Here we discover unexpectedly that a single mutation R86A Akt exhibits intensified autoinhibitory features with enhanced PH domain-kinase domain affinity. Structural and biochemical analysis uncovers the importance of a key interaction network involving Arg86, Glu17, and Tyr18 that controls Akt conformation and activity. Our studies also shed light on the molecular basis for E17K Akt activation as an oncogenic driver.