A sex difference in the response of the rodent postsynaptic density to synGAP haploinsufficiency

  1. Tara L Mastro  Is a corresponding author
  2. Anthony Preza
  3. Shinjini Basu
  4. Sumantra Chattarji
  5. Sally M Till
  6. Peter C Kind
  7. Mary B Kennedy  Is a corresponding author
  1. California Institute of Technology, United States
  2. University of Edinburgh, United Kingdom
  3. National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Abstract

SynGAP is a postsynaptic density (PSD) protein that binds to PDZ domains of the scaffold protein PSD-95. We previously reported that heterozygous deletion of Syngap1 in mice is correlated with increased steady-state levels of other key PSD proteins that bind PSD-95, although the level of PSD-95 remains constant (Walkup et al., 2016). For example, the ratio to PSD-95 of Transmembrane AMPA-Receptor-associated Proteins (TARPs), which mediate binding of AMPA-type glutamate receptors to PSD-95, was increased in young Syngap1+/- mice. Here we show that only females and not males show a highly significant correlation between an increase in TARP and a decrease in synGAP in the PSDs of Syngap1+/- rodents. The data reveal a sex difference in the adaptation of the PSD scaffold to synGAP haploinsufficiency.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Tara L Mastro

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    tmastro@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Anthony Preza

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shinjini Basu

    Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Sumantra Chattarji

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9962-3635
  5. Sally M Till

    Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter C Kind

    Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4256-9639
  7. Mary B Kennedy

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    kennedym@its.caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1369-0525

Funding

National Institute of Mental Health (MH15456)

  • Tara L Mastro
  • Anthony Preza
  • Mary B Kennedy

Allen and Lenabelle Davis Foundation (Professorship)

  • Mary B Kennedy

National Science Foundation (Postdoctoral Fellowship)

  • Tara L Mastro

Department of Biotechnology , Ministry of Science and Technology

  • Sumantra Chattarji
  • Peter C Kind

Simons Foundation (Grant 529085)

  • Peter C Kind

Patrick Wild Centre (Patrick Wild Centre)

  • Sally M Till
  • Peter C Kind

Medical Research Council (MR/P006213/1)

  • Sally M Till
  • Peter C Kind

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (1034-18) of California Institute of Technology.

Copyright

© 2020, Mastro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,763
    views
  • 252
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tara L Mastro
  2. Anthony Preza
  3. Shinjini Basu
  4. Sumantra Chattarji
  5. Sally M Till
  6. Peter C Kind
  7. Mary B Kennedy
(2020)
A sex difference in the response of the rodent postsynaptic density to synGAP haploinsufficiency
eLife 9:e52656.
https://doi.org/10.7554/eLife.52656

Share this article

https://doi.org/10.7554/eLife.52656

Further reading

    1. Biochemistry and Chemical Biology
    Shraddha KC, Kenny H Nguyen ... Thomas C Boothby
    Research Article

    The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.