Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α

  1. Liku B Tezera  Is a corresponding author
  2. Magdalena K Bielecka
  3. Paul Ogongo
  4. Naomi F Walker
  5. Matthew Ellis
  6. Diana J Garay-Baquero
  7. Kristian Thomas
  8. Michaela T Reichmann
  9. David A Johnston
  10. Katalin Andrea Wilkinson
  11. Mohamed Ahmed
  12. Sanjay Jogai
  13. Suwan N Jayasinghe
  14. Robert J Wilkinson
  15. Salah Mansour
  16. Gareth J Thomas
  17. Christian H Ottensmeier
  18. Alasdair Leslie
  19. Paul T Elkington
  1. University of Southampton, United Kingdom
  2. Africa Health Research Institute, South Africa
  3. Liverpool School of Tropical Medicine, United Kingdom
  4. The Francis Crick Institute, United Kingdom
  5. African Health Research Institute, South Africa
  6. University College London, United Kingdom

Abstract

Previously, we developed a 3-dimensional cell culture model of human tuberculosis (TB) and demonstrated its potential to interrogate the host-pathogen interaction (Tezera et al, 2017). Here, we use the model to investigate mechanisms whereby immune checkpoint therapy for cancer paradoxically activates TB infection. In patients, PD-1 is expressed in Mycobacterium tuberculosis (Mtb)-infected lung tissue but absent in areas of immunopathology. In the microsphere model, PD-1 ligands are up-regulated by infection, and the PD-1/PD-L1 axis is further induced by hypoxia. Inhibition of PD-1 signalling increases Mtb growth, and augments cytokine secretion. TNF-α is responsible for accelerated Mtb growth, and TNF-α neutralisation reverses augmented Mtb growth caused by anti-PD-1 treatment. In human TB, pulmonary TNF-α immunoreactivity is increased and circulating PD-1 expression negatively correlates with sputum TNF-α concentrations. Together, our findings demonstrate that PD-1 regulates the immune response in TB, and inhibition of PD-1 accelerates Mtb growth via excessive TNF-α secretion.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for for all figures as a data resource file

Article and author information

Author details

  1. Liku B Tezera

    NIHR Respiratory Biomedical Research Unit, University of Southampton, Southampton, United Kingdom
    For correspondence
    l.tezera@soton.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7898-6709
  2. Magdalena K Bielecka

    NIHR Respiratory Biomedical Research Unit, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul Ogongo

    Laboratory Science, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0093-5768
  4. Naomi F Walker

    Medicine, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew Ellis

    Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Diana J Garay-Baquero

    Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9450-8504
  7. Kristian Thomas

    Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Michaela T Reichmann

    Faculty of Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6714-8400
  9. David A Johnston

    Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Katalin Andrea Wilkinson

    Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9796-2040
  11. Mohamed Ahmed

    African Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  12. Sanjay Jogai

    NIHR Respiratory Biomedical Research Unit, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Suwan N Jayasinghe

    BioPhysics Group, UCL Institute of Biomedical Engineering, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Robert J Wilkinson

    Tuberculosis laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Salah Mansour

    NIHR Respiratory Biomedical Research Unit, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5982-734X
  16. Gareth J Thomas

    Cancer Immunology, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3832-7335
  17. Christian H Ottensmeier

    CRUK and NIHR Experimental Cancer Medicine Center, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3619-1657
  18. Alasdair Leslie

    African Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  19. Paul T Elkington

    NIHR Respiratory Biomedical Research Unit, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0390-0613

Funding

Medical Research Council (MR/P023754/1)

  • Paul T Elkington

Medical Research Council (MR/N006631/1)

  • Paul T Elkington

Wessex Medical Research (Innovation Grant 2017)

  • Liku B Tezera

Wellcome Trust (210662/Z/18/Z)

  • Alasdair Leslie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All ethical approvals were in place from the appropriate regulatory organisations in both the UK and South Africa, as cited in the methods

Copyright

© 2020, Tezera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,588
    views
  • 729
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Liku B Tezera
  2. Magdalena K Bielecka
  3. Paul Ogongo
  4. Naomi F Walker
  5. Matthew Ellis
  6. Diana J Garay-Baquero
  7. Kristian Thomas
  8. Michaela T Reichmann
  9. David A Johnston
  10. Katalin Andrea Wilkinson
  11. Mohamed Ahmed
  12. Sanjay Jogai
  13. Suwan N Jayasinghe
  14. Robert J Wilkinson
  15. Salah Mansour
  16. Gareth J Thomas
  17. Christian H Ottensmeier
  18. Alasdair Leslie
  19. Paul T Elkington
(2020)
Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α
eLife 9:e52668.
https://doi.org/10.7554/eLife.52668

Share this article

https://doi.org/10.7554/eLife.52668

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Benita Martin-Castaño, Patricia Diez-Echave ... Julio Galvez
    Research Article

    Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity, and microbiota could play a key role in the infection, progression, and outcome of the disease. SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. To identify new prognostic markers for the disease, a multicentre prospective observational cohort study was carried out in COVID-19 patients divided into three cohorts based on symptomatology: mild (n = 24), moderate (n = 51), and severe/critical (n = 31). Faecal and nasopharyngeal samples were taken, and the microbiota was analysed. Linear discriminant analysis identified Mycoplasma salivarium, Prevotella dentalis, and Haemophilus parainfluenzae as biomarkers of severe COVID-19 in nasopharyngeal microbiota, while Prevotella bivia and Prevotella timonensis were defined in faecal microbiota. Additionally, a connection between faecal and nasopharyngeal microbiota was identified, with a significant ratio between P. timonensis (faeces) and P. dentalis and M. salivarium (nasopharyngeal) abundances found in critically ill patients. This ratio could serve as a novel prognostic tool for identifying severe COVID-19 cases.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.