TGFβ signaling is critical for maintenance of the tendon cell fate

  1. Guak-Kim Tan
  2. Brian A Pryce
  3. Anna Stabio
  4. John V Brigande
  5. ChaoJie Wang
  6. Zheng Xia
  7. Sara F Tufa
  8. Douglas R Keene
  9. Ronen Schweitzer  Is a corresponding author
  1. Shriners Hospitals for Children, United States
  2. Oregon Health and Science University, United States

Abstract

Studies of cell fate focus on specification, but little is known about maintenance of the differentiated state. In this study we find that the mouse tendon cell fate requires continuous maintenance in vivo and identify an essential role for TGFβ signaling in maintenance of the tendon cell fate. To examine the role of TGFβ signaling in tenocyte function the TGFb type II receptor (Tgfbr2) was targeted in the Scleraxis-expressing cell lineage using the ScxCre deletor. Tendon development was not disrupted in mutant embryos, but shortly after birth tenocytes lost differentiation markers and reverted to a more stem/progenitor state. Viral reintroduction of Tgfbr2 to mutants prevented and even rescued tenocyte dedifferentiation suggesting a continuous and cell autonomous role for TGFβ signaling in cell fate maintenance. These results uncover the critical importance of molecular pathways that maintain the differentiated cell fate and a key role for TGFβ signaling in these processes.

Data availability

All data generated or analyzed during this study are included in the manuscript and Supplementary Files.Single cell RNA-Seq data has been deposited onto GEO under accession code GSE139558.

The following data sets were generated

Article and author information

Author details

  1. Guak-Kim Tan

    Research Division, Shriners Hospitals for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Brian A Pryce

    Research Division, Shriners Hospitals for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Stabio

    Research Division, Shriners Hospitals for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John V Brigande

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. ChaoJie Wang

    Computational Biology Program, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zheng Xia

    Computational Biology Program, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sara F Tufa

    Research Division, Shriners Hospitals for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Douglas R Keene

    Research Division, Shriners Hospitals for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ronen Schweitzer

    Research Division, Shriners Hospitals for Children, Portland, United States
    For correspondence
    schweitz@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7425-5028

Funding

National Institutes of Health (R01AR055973)

  • Ronen Schweitzer

Shriners Hospitals for Children (SHC 5410-POR-14)

  • Ronen Schweitzer

National Institutes of Health (R01DC014160)

  • John V Brigande

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (IP00000717) of the Oregon Health & Science University.

Copyright

© 2020, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,940
    views
  • 502
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guak-Kim Tan
  2. Brian A Pryce
  3. Anna Stabio
  4. John V Brigande
  5. ChaoJie Wang
  6. Zheng Xia
  7. Sara F Tufa
  8. Douglas R Keene
  9. Ronen Schweitzer
(2020)
TGFβ signaling is critical for maintenance of the tendon cell fate
eLife 9:e52695.
https://doi.org/10.7554/eLife.52695

Share this article

https://doi.org/10.7554/eLife.52695

Further reading

    1. Cell Biology
    2. Neuroscience
    Naoki Yamawaki, Hande Login ... Asami Tanimura
    Research Article

    The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (ENvCA1-proj. neurons), embedded in recurrent circuits with other EN neurons and the piriform cortex. Although the ENvCA1-proj. neuron activity was biased toward novelty across stimulus categories, their chemogenetic inhibition selectively disrupted the memory-guided but not innate responses of mice to novelty. Based on our functional connectivity analysis, we suggest that ENvCA1-proj. neurons serve as an essential node for recognition memory through recurrent circuits mediating sustained attention to novelty, and through feed-forward inhibition of distal vCA1 neurons shifting memory-guided behavior from familiarity to novelty.

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.