1. Cell Biology
  2. Developmental Biology
Download icon

TGFβ signaling is critical for maintenance of the tendon cell fate

  1. Guak-Kim Tan
  2. Brian A Pryce
  3. Anna Stabio
  4. John V Brigande
  5. ChaoJie Wang
  6. Zheng Xia
  7. Sara F Tufa
  8. Douglas R Keene
  9. Ronen Schweitzer  Is a corresponding author
  1. Shriners Hospitals for Children, United States
  2. Oregon Health and Science University, United States
Research Article
  • Cited 6
  • Views 1,115
  • Annotations
Cite this article as: eLife 2020;9:e52695 doi: 10.7554/eLife.52695

Abstract

Studies of cell fate focus on specification, but little is known about maintenance of the differentiated state. In this study we find that the mouse tendon cell fate requires continuous maintenance in vivo and identify an essential role for TGFβ signaling in maintenance of the tendon cell fate. To examine the role of TGFβ signaling in tenocyte function the TGFb type II receptor (Tgfbr2) was targeted in the Scleraxis-expressing cell lineage using the ScxCre deletor. Tendon development was not disrupted in mutant embryos, but shortly after birth tenocytes lost differentiation markers and reverted to a more stem/progenitor state. Viral reintroduction of Tgfbr2 to mutants prevented and even rescued tenocyte dedifferentiation suggesting a continuous and cell autonomous role for TGFβ signaling in cell fate maintenance. These results uncover the critical importance of molecular pathways that maintain the differentiated cell fate and a key role for TGFβ signaling in these processes.

Article and author information

Author details

  1. Guak-Kim Tan

    Research Division, Shriners Hospitals for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Brian A Pryce

    Research Division, Shriners Hospitals for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Stabio

    Research Division, Shriners Hospitals for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John V Brigande

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. ChaoJie Wang

    Computational Biology Program, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zheng Xia

    Computational Biology Program, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sara F Tufa

    Research Division, Shriners Hospitals for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Douglas R Keene

    Research Division, Shriners Hospitals for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ronen Schweitzer

    Research Division, Shriners Hospitals for Children, Portland, United States
    For correspondence
    schweitz@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7425-5028

Funding

National Institutes of Health (R01AR055973)

  • Ronen Schweitzer

Shriners Hospitals for Children (SHC 5410-POR-14)

  • Ronen Schweitzer

National Institutes of Health (R01DC014160)

  • John V Brigande

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (IP00000717) of the Oregon Health & Science University.

Reviewing Editor

  1. Cheryl Ackert-Bicknell, University of Colorado, United States

Publication history

  1. Received: October 12, 2019
  2. Accepted: January 17, 2020
  3. Accepted Manuscript published: January 21, 2020 (version 1)
  4. Version of Record published: February 17, 2020 (version 2)

Copyright

© 2020, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,115
    Page views
  • 256
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Catherine G Triandafillou et al.
    Research Article

    Heat shock induces a conserved transcriptional program regulated by heat shock factor 1 (Hsf1) in eukaryotic cells. Activation of this heat shock response is triggered by heat-induced misfolding of newly synthesized polypeptides, and so has been thought to depend on ongoing protein synthesis. Here, using the budding yeast Saccharomyces cerevisiae, we report the discovery that Hsf1 can be robustly activated when protein synthesis is inhibited, so long as cells undergo cytosolic acidification. Heat shock has long been known to cause transient intracellular acidification which, for reasons which have remained unclear, is associated with increased stress resistance in eukaryotes. We demonstrate that acidification is required for heat shock response induction in translationally inhibited cells, and specifically affects Hsf1 activation. Physiological heat-triggered acidification also increases population fitness and promotes cell cycle reentry following heat shock. Our results uncover a previously unknown adaptive dimension of the well-studied eukaryotic heat shock response.

    1. Cell Biology
    Vasyl Ivashov et al.
    Research Article

    How cells adjust nutrient transport across their membranes is incompletely understood. Previously, we have shown that S. cerevisiae broadly re-configures the nutrient transporters at the plasma membrane in response to amino acid availability, through endocytosis of sugar- and amino acid transporters (AATs) (Müller et al., 2015). A genome-wide screen now revealed that the selective endocytosis of four AATs during starvation required the α-arrestin family protein Art2/Ecm21, an adaptor for the ubiquitin ligase Rsp5, and its induction through the general amino acid control pathway. Art2 uses a basic patch to recognize C-terminal acidic sorting motifs in AATs and thereby instructs Rsp5 to ubiquitinate proximal lysine residues. When amino acids are in excess, Rsp5 instead uses TORC1-activated Art1 to detect N-terminal acidic sorting motifs within the same AATs, which initiates exclusive substrate-induced endocytosis. Thus, amino acid excess or starvation activate complementary α-arrestin-Rsp5-complexes to control selective endocytosis and adapt nutrient acquisition.