Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway

  1. Jernej Turnšek
  2. John K Brunson
  3. Maria del Pilar Martinez Viedma
  4. Thomas J Deerinck
  5. Aleš Horák
  6. Miroslav Oborník
  7. Vincent A Bielinski
  8. Andrew Ellis Allen  Is a corresponding author
  1. Harvard University, United States
  2. University of California San Diego, United States
  3. J. Craig Venter Institute, United States
  4. National Center for Microscopy and Imaging Research, University of California San Diego, United States
  5. Czech Academy of Sciences, Czech Republic
  6. J Craig Venter Institute, United States

Abstract

Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed, however proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files

The following previously published data sets were used

Article and author information

Author details

  1. Jernej Turnšek

    Biological and Biomedical Sciences, The Graduate School of Arts and Sciences, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John K Brunson

    Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria del Pilar Martinez Viedma

    Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas J Deerinck

    National Center for Microscopy and Imaging Research, University of California San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aleš Horák

    Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Miroslav Oborník

    Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  7. Vincent A Bielinski

    Synthetic Biology and Bioenergy, J Craig Venter Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew Ellis Allen

    Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
    For correspondence
    aallen@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5911-6081

Funding

Gordon and Betty Moore Foundation (GBMF3828)

  • Andrew Ellis Allen

Gordon and Betty Moore Foundation (GBMF5006)

  • Andrew Ellis Allen

National Science Foundation (NSF-OCE-1756884)

  • Andrew Ellis Allen

National Science Foundation (NSF-MCB-1818390)

  • Andrew Ellis Allen

Biological and Environmental Research (DE-SC0018344)

  • Andrew Ellis Allen

Gordon and Betty Moore Foundation (GBMF4958)

  • Jernej Turnšek

National Institutes of Health (1F31ES030613-01)

  • John K Brunson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian S Hardtke, University of Lausanne, Switzerland

Version history

  1. Received: October 16, 2019
  2. Accepted: February 15, 2021
  3. Accepted Manuscript published: February 16, 2021 (version 1)
  4. Accepted Manuscript updated: February 19, 2021 (version 2)
  5. Version of Record published: March 18, 2021 (version 3)

Copyright

© 2021, Turnšek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,728
    views
  • 373
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jernej Turnšek
  2. John K Brunson
  3. Maria del Pilar Martinez Viedma
  4. Thomas J Deerinck
  5. Aleš Horák
  6. Miroslav Oborník
  7. Vincent A Bielinski
  8. Andrew Ellis Allen
(2021)
Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway
eLife 10:e52770.
https://doi.org/10.7554/eLife.52770

Share this article

https://doi.org/10.7554/eLife.52770

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article Updated

    Background:

    Few national-level studies have evaluated the impact of ‘hybrid’ immunity (vaccination coupled with recovery from infection) from the Omicron variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

    Methods:

    From May 2020 to December 2022, we conducted serial assessments (each of ~4000–9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots (DBSs) to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results:

    Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than 6 months earlier, spike levels fell notably and continuously for the 9-month post-vaccination. In contrast, among adults infected within 6 months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than 6 months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% confidence interval 11–14%) before omicron to 78% (76–80%) by December 2022, equating to 25 million infected adults cumulatively. However, the coronavirus disease 2019 (COVID-19) weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions:

    Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected DBSs are a practicable biological surveillance platform.

    Funding:

    Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael’s Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.

    1. Microbiology and Infectious Disease
    Alejandro Prieto, Luïsa Miró ... Antonio Juarez
    Research Article

    Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.