Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway

  1. Jernej Turnšek
  2. John K Brunson
  3. Maria del Pilar Martinez Viedma
  4. Thomas J Deerinck
  5. Aleš Horák
  6. Miroslav Oborník
  7. Vincent A Bielinski
  8. Andrew Ellis Allen  Is a corresponding author
  1. Harvard University, United States
  2. University of California San Diego, United States
  3. J. Craig Venter Institute, United States
  4. National Center for Microscopy and Imaging Research, University of California San Diego, United States
  5. Czech Academy of Sciences, Czech Republic
  6. J Craig Venter Institute, United States

Abstract

Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed, however proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files

The following previously published data sets were used

Article and author information

Author details

  1. Jernej Turnšek

    Biological and Biomedical Sciences, The Graduate School of Arts and Sciences, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John K Brunson

    Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria del Pilar Martinez Viedma

    Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas J Deerinck

    National Center for Microscopy and Imaging Research, University of California San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aleš Horák

    Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Miroslav Oborník

    Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  7. Vincent A Bielinski

    Synthetic Biology and Bioenergy, J Craig Venter Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew Ellis Allen

    Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
    For correspondence
    aallen@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5911-6081

Funding

Gordon and Betty Moore Foundation (GBMF3828)

  • Andrew Ellis Allen

Gordon and Betty Moore Foundation (GBMF5006)

  • Andrew Ellis Allen

National Science Foundation (NSF-OCE-1756884)

  • Andrew Ellis Allen

National Science Foundation (NSF-MCB-1818390)

  • Andrew Ellis Allen

Biological and Environmental Research (DE-SC0018344)

  • Andrew Ellis Allen

Gordon and Betty Moore Foundation (GBMF4958)

  • Jernej Turnšek

National Institutes of Health (1F31ES030613-01)

  • John K Brunson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Turnšek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,813
    views
  • 380
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jernej Turnšek
  2. John K Brunson
  3. Maria del Pilar Martinez Viedma
  4. Thomas J Deerinck
  5. Aleš Horák
  6. Miroslav Oborník
  7. Vincent A Bielinski
  8. Andrew Ellis Allen
(2021)
Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway
eLife 10:e52770.
https://doi.org/10.7554/eLife.52770

Share this article

https://doi.org/10.7554/eLife.52770

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Louna Fruchard, Anamaria Babosan ... Zeynep Baharoglu
    Research Article

    Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). tgt is required for optimal growth of Vibrio cholerae in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure. We characterized its impact on the overall bacterial proteome, and elucidated the molecular mechanisms underlying the effects of Q34 modification in antibiotic translational stress response. Using molecular reporters, we showed that Q34 impacts the efficiency of decoding at tyrosine TAT and TAC codons. Proteomics analyses revealed that the anti-SoxR factor RsxA is better translated in the absence of tgt. RsxA displays a codon bias toward tyrosine TAT and overabundance of RsxA leads to decreased expression of genes belonging to SoxR oxidative stress regulon. We also identified conditions that regulate tgt expression. We propose that regulation of Q34 modification in response to environmental cues leads to translational reprogramming of transcripts bearing a biased tyrosine codon usage. In silico analysis further identified candidate genes which could be subject to such translational regulation, among which DNA repair factors. Such transcripts, fitting the definition of modification tunable transcripts, are central in the bacterial response to antibiotics.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS's antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium's own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.