Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate

  1. Xue Fei
  2. Tristan A Bell
  3. Simon Jenni
  4. Benjamin M Stinson
  5. Tania A Baker
  6. Stephen C Harrison
  7. Robert T Sauer  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Harvard Medical School, United States
  3. Howard Hughes Medical Institute, Harvard Medical School, United States

Abstract

ClpXP is an ATP-dependent protease in which the ClpX AAA+ motor binds, unfolds, and translocates specific protein substrates into the degradation chamber of ClpP. We present cryo-EM studies of the E. coli enzyme that show how asymmetric hexameric rings of ClpX bind symmetric heptameric rings of ClpP and interact with protein substrates. Subunits in the ClpX hexamer assume a spiral conformation and interact with two-residue segments of substrate in the axial channel, as observed for other AAA+ proteases and protein-remodeling machines. Strictly sequential models of ATP hydrolysis and a power stroke that moves two residues of the substrate per translocation step have been inferred from these structural features for other AAA+ unfoldases, but biochemical and single-molecule biophysical studies indicate that ClpXP operates by a probabilistic mechanism in which five to eight residues are translocated for each ATP hydrolyzed. We propose structure-based models that could account for the functional results.

Data availability

PDB files for the structures determined here have been deposited in the PDB under accession codes 6PPE, 6PP8, 6PP7, 6PP6, 6PP5, 6POS, 6POD, 6PO3, and 6PO1.

The following data sets were generated
    1. Fei et al
    (2020) 6PPE
    RCSB Protein Data Bank, 6PPE.
    1. Fei et al
    (2020) 6PP8
    RCSB Protein Data Bank, 6PP8.
    1. Fei et al
    (2020) 6PP7
    RCSB Protein Data Bank, 6PP7.
    1. Fei et al
    (2020) 6PP6
    RCSB Protein Data Bank, 6PP6.
    1. Fei et al
    (2020) 6PP5
    RCSB Protein Data Bank, 6PP5.
    1. Fei et al
    (2020) 6POS
    RCSB Protein Data Bank, 6POS.
    1. Fei et al
    (2020) 6POD
    RCSB Protein Data Bank, 6POD.
    1. Fei et al
    (2020) 6PO3
    RCSB Protein Data Bank, 6PO3.
    1. Fei et al
    (2020) 6PO1
    RCSB Protein Data Bank, 6PO1.

Article and author information

Author details

  1. Xue Fei

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tristan A Bell

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3668-8412
  3. Simon Jenni

    Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Benjamin M Stinson

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tania A Baker

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0737-3411
  6. Stephen C Harrison

    Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7215-9393
  7. Robert T Sauer

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    bobsauer@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1719-5399

Funding

National Institutes of Health (GM-101988)

  • Robert T Sauer

Howard Hughes Medical Institute

  • Tania A Baker
  • Stephen C Harrison

National Institutes of Health (5T32GM-007287)

  • Tristan A Bell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. James M Berger, Johns Hopkins University School of Medicine, United States

Version history

  1. Received: October 16, 2019
  2. Accepted: February 27, 2020
  3. Accepted Manuscript published: February 28, 2020 (version 1)
  4. Version of Record published: April 1, 2020 (version 2)

Copyright

© 2020, Fei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,554
    views
  • 912
    downloads
  • 103
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xue Fei
  2. Tristan A Bell
  3. Simon Jenni
  4. Benjamin M Stinson
  5. Tania A Baker
  6. Stephen C Harrison
  7. Robert T Sauer
(2020)
Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate
eLife 9:e52774.
https://doi.org/10.7554/eLife.52774

Share this article

https://doi.org/10.7554/eLife.52774

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.