Aire-dependent genes undergo Clp1-mediated 3'UTR shortening associated with higher transcript stability in the thymus
Abstract
The ability of the immune system to avoid autoimmune disease relies on tolerization of thymocytes to self-antigens whose expression and presentation by thymic medullary epithelial cells (mTECs) is controlled predominantly by Aire at the transcriptional level and possibly regulated at other unrecognized levels. Aire-sensitive gene expression is influenced by several molecular factors, some of which belong to the 3'end processing complex, suggesting they might impact transcript stability and levels through an effect on 3'UTR shortening. We discovered that Aire-sensitive genes display a pronounced preference for short-3'UTR transcript isoforms in mTECs, a feature preceding Aire's expression and correlated with the preferential selection of proximal polyA sites by the 3'end processing complex. Through an RNAi screen and generation of a lentigenic mouse, we found that one factor, Clp1, promotes 3'UTR shortening associated with higher transcript stability and expression of Aire-sensitive genes, revealing a post-transcriptional level of control of Aire-activated expression in mTECs.
Data availability
All RNAseq and microarray data are deposited in the NCBI Gene Expression Omnibus database (GEO).
-
WT and Aire-KO mouse MEChi RNAseq profilingNCBI Gene Expression Omnibus, GSE140683.
-
RNAseq profiling of Aire and Ctr-transfected HEK293 cellsNCBI Gene Expression Omnibus, GSE140738.
-
Stability of Aire-upregulated and Aire-neutral transcripts in medullary thymic epithelial cellsNCBI Gene Expression Omnibus, GSE140815.
-
Clp1 knockdown lentigenic mouse generationNCBI Gene Expression Omnibus, GSE140878.
-
RNAseq profiling of Ctr and CLP1 knockdown HEK293 cellsNCBI Gene Expression Omnibus, GSE140993.
-
RNAseq profiling of Ctr and CLP1 knockdown HEK293 cellsNCBI Gene Expression Omnibus, GSE141118.
-
PAR-CLIP CstF-64NCBI Gene Expression Omnibus, GSM917676.
-
Aire-KO MEChi RNAseq profilingNCBI Gene Expression Omnibus, GSE87133.
-
Sirt1 is essential for Aire-mediated induction of central immunological toleranceNCBI Gene Expression Omnibus, GSE68190.
Article and author information
Author details
Funding
Agence Nationale de la Recherche (Research grant,2011-CHEX-001-R12004KK)
- Matthieu Giraud
European Commission (Career Integration Grant,CIG PCIG9-GA-2011-294212)
- Matthieu Giraud
Agence Nationale de la Recherche (Investissements d'Avenir,ANR-10-INBS-09)
- Fanny Coulpier
Agence Nationale de la Recherche (Investissements d'Avenir,ANR-11-INBS-0013)
- Christophe Blanchet
Fondation pour la Recherche Médicale (Graduate Student Fellowship,FDT20150532551)
- Clotilde Guyon
Fondation pour la Recherche Médicale (Bioinformatics engineer grant)
- Yen-Chin Li
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Mice were housed, bred and manipulated in specific-pathogen-free conditions at Cochin Institute according to the guidelines of the French Veterinary Department and under procedures approved by the Paris-Descartes Ethical Committee for Animal Experimentation (decision CEEA34.MG.021.11 or APAFIS #3683 No 2015062411489297 for lentigenic mouse generation)
Copyright
© 2020, Guyon et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,256
- views
-
- 165
- downloads
-
- 14
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
We report our attempt to replicate reports of transgenerational epigenetic inheritance in Caenorhabditis elegans. Multiple laboratories report that C. elegans adults and their F1 embryos exposed to the pathogen Pseudomonas aeruginosa show pathogen aversion behavior and increased daf-7/TGFβ reporter gene expression. However, results from one group show persistence of both through the F4 generation. We failed to consistently detect either the avoidance response or elevated daf-7 expression beyond the F1 generation. We confirmed that the dsRNA transport proteins SID-1 and SID-2 are required for intergenerational (F1) inheritance of pathogen avoidance, but not for the F1 inheritance of elevated daf-7 expression. Reanalysis of RNA seq data provides additional evidence that this intergenerational inherited PA14 response may be mediated by small RNAs. The experimental methods are well-described, the source materials are readily available, including samples from the reporting laboratory, and we explored a variety of environmental conditions likely to account for lab-to-lab variability. None of these adjustments altered our results. We conclude that this example of transgenerational inheritance lacks robustness, confirm that the intergenerational avoidance response, but not the elevated daf-7p::gfp expression in F1 progeny, requires sid-1 and sid-2, and identify candidate siRNAs and target genes that may mediate this intergenerational response.
-
- Computational and Systems Biology
- Genetics and Genomics
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.