Aire-dependent genes undergo Clp1-mediated 3'UTR shortening associated with higher transcript stability in the thymus

  1. Clotilde Guyon
  2. Nada Jmari
  3. Francine Padonou
  4. Yen-Chin Li
  5. Olga Ucar
  6. Noriyuki Fujikado
  7. Fanny Coulpier
  8. Christophe Blanchet
  9. David E Root
  10. Matthieu Giraud  Is a corresponding author
  1. Institut Cochin, INSERM U1016, France
  2. Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, France
  3. German Cancer Research Center, Germany
  4. Harvard Medical School, United States
  5. Institut de Biologie de l'Ecole Normale Supérieure, France
  6. Institut Français de Bioinformatique, CNRS UMS 3601, France
  7. Broad Institute of Harvard and MIT, United States

Abstract

The ability of the immune system to avoid autoimmune disease relies on tolerization of thymocytes to self-antigens whose expression and presentation by thymic medullary epithelial cells (mTECs) is controlled predominantly by Aire at the transcriptional level and possibly regulated at other unrecognized levels. Aire-sensitive gene expression is influenced by several molecular factors, some of which belong to the 3'end processing complex, suggesting they might impact transcript stability and levels through an effect on 3'UTR shortening. We discovered that Aire-sensitive genes display a pronounced preference for short-3'UTR transcript isoforms in mTECs, a feature preceding Aire's expression and correlated with the preferential selection of proximal polyA sites by the 3'end processing complex. Through an RNAi screen and generation of a lentigenic mouse, we found that one factor, Clp1, promotes 3'UTR shortening associated with higher transcript stability and expression of Aire-sensitive genes, revealing a post-transcriptional level of control of Aire-activated expression in mTECs.

Data availability

All RNAseq and microarray data are deposited in the NCBI Gene Expression Omnibus database (GEO).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Clotilde Guyon

    Immunology, Institut Cochin, INSERM U1016, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Nada Jmari

    Immunology, Institut Cochin, INSERM U1016, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Francine Padonou

    Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Yen-Chin Li

    Immunology, Institut Cochin, INSERM U1016, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Olga Ucar

    Developmental Immunology, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Noriyuki Fujikado

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Fanny Coulpier

    Genomic platform, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Christophe Blanchet

    IFB-Core, Institut Français de Bioinformatique, CNRS UMS 3601, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  9. David E Root

    Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthieu Giraud

    Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
    For correspondence
    matthieu.giraud@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1208-9677

Funding

Agence Nationale de la Recherche (Research grant,2011-CHEX-001-R12004KK)

  • Matthieu Giraud

European Commission (Career Integration Grant,CIG PCIG9-GA-2011-294212)

  • Matthieu Giraud

Agence Nationale de la Recherche (Investissements d'Avenir,ANR-10-INBS-09)

  • Fanny Coulpier

Agence Nationale de la Recherche (Investissements d'Avenir,ANR-11-INBS-0013)

  • Christophe Blanchet

Fondation pour la Recherche Médicale (Graduate Student Fellowship,FDT20150532551)

  • Clotilde Guyon

Fondation pour la Recherche Médicale (Bioinformatics engineer grant)

  • Yen-Chin Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were housed, bred and manipulated in specific-pathogen-free conditions at Cochin Institute according to the guidelines of the French Veterinary Department and under procedures approved by the Paris-Descartes Ethical Committee for Animal Experimentation (decision CEEA34.MG.021.11 or APAFIS #3683 No 2015062411489297 for lentigenic mouse generation)

Copyright

© 2020, Guyon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,231
    views
  • 161
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clotilde Guyon
  2. Nada Jmari
  3. Francine Padonou
  4. Yen-Chin Li
  5. Olga Ucar
  6. Noriyuki Fujikado
  7. Fanny Coulpier
  8. Christophe Blanchet
  9. David E Root
  10. Matthieu Giraud
(2020)
Aire-dependent genes undergo Clp1-mediated 3'UTR shortening associated with higher transcript stability in the thymus
eLife 9:e52985.
https://doi.org/10.7554/eLife.52985

Share this article

https://doi.org/10.7554/eLife.52985

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Showkat Ahmad Dar, Sulochan Malla ... Manolis Maragkakis
    Research Article

    Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.

    1. Genetics and Genomics
    2. Neuroscience
    Thomas P Spargo, Lachlan Gilchrist ... Alfredo Iacoangeli
    Research Article

    Continued methodological advances have enabled numerous statistical approaches for the analysis of summary statistics from genome-wide association studies. Genetic correlation analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with significant ‘local’ genetic correlations can be investigated further using state-of-the-art methodologies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide local genetic correlation analysis approach for identifying genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson’s disease, and schizophrenia. The correlation analysis identified several associations between traits, the majority of which were loci in the human leukocyte antigen region. Colocalisation analysis suggested that disease-implicated variants in these loci often differ between traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation analysis protocol designed for this study has been implemented in a flexible analysis pipeline that produces HTML reports and is available at: https://github.com/ThomasPSpargo/COLOC-reporter.