Aire-dependent genes undergo Clp1-mediated 3'UTR shortening associated with higher transcript stability in the thymus

  1. Clotilde Guyon
  2. Nada Jmari
  3. Francine Padonou
  4. Yen-Chin Li
  5. Olga Ucar
  6. Noriyuki Fujikado
  7. Fanny Coulpier
  8. Christophe Blanchet
  9. David E Root
  10. Matthieu Giraud  Is a corresponding author
  1. Institut Cochin, INSERM U1016, France
  2. Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, France
  3. German Cancer Research Center, Germany
  4. Harvard Medical School, United States
  5. Institut de Biologie de l'Ecole Normale Supérieure, France
  6. Institut Français de Bioinformatique, CNRS UMS 3601, France
  7. Broad Institute of Harvard and MIT, United States

Abstract

The ability of the immune system to avoid autoimmune disease relies on tolerization of thymocytes to self-antigens whose expression and presentation by thymic medullary epithelial cells (mTECs) is controlled predominantly by Aire at the transcriptional level and possibly regulated at other unrecognized levels. Aire-sensitive gene expression is influenced by several molecular factors, some of which belong to the 3'end processing complex, suggesting they might impact transcript stability and levels through an effect on 3'UTR shortening. We discovered that Aire-sensitive genes display a pronounced preference for short-3'UTR transcript isoforms in mTECs, a feature preceding Aire's expression and correlated with the preferential selection of proximal polyA sites by the 3'end processing complex. Through an RNAi screen and generation of a lentigenic mouse, we found that one factor, Clp1, promotes 3'UTR shortening associated with higher transcript stability and expression of Aire-sensitive genes, revealing a post-transcriptional level of control of Aire-activated expression in mTECs.

Data availability

All RNAseq and microarray data are deposited in the NCBI Gene Expression Omnibus database (GEO).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Clotilde Guyon

    Immunology, Institut Cochin, INSERM U1016, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Nada Jmari

    Immunology, Institut Cochin, INSERM U1016, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Francine Padonou

    Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Yen-Chin Li

    Immunology, Institut Cochin, INSERM U1016, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Olga Ucar

    Developmental Immunology, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Noriyuki Fujikado

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Fanny Coulpier

    Genomic platform, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Christophe Blanchet

    IFB-Core, Institut Français de Bioinformatique, CNRS UMS 3601, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  9. David E Root

    Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthieu Giraud

    Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
    For correspondence
    matthieu.giraud@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1208-9677

Funding

Agence Nationale de la Recherche (Research grant,2011-CHEX-001-R12004KK)

  • Matthieu Giraud

European Commission (Career Integration Grant,CIG PCIG9-GA-2011-294212)

  • Matthieu Giraud

Agence Nationale de la Recherche (Investissements d'Avenir,ANR-10-INBS-09)

  • Fanny Coulpier

Agence Nationale de la Recherche (Investissements d'Avenir,ANR-11-INBS-0013)

  • Christophe Blanchet

Fondation pour la Recherche Médicale (Graduate Student Fellowship,FDT20150532551)

  • Clotilde Guyon

Fondation pour la Recherche Médicale (Bioinformatics engineer grant)

  • Yen-Chin Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were housed, bred and manipulated in specific-pathogen-free conditions at Cochin Institute according to the guidelines of the French Veterinary Department and under procedures approved by the Paris-Descartes Ethical Committee for Animal Experimentation (decision CEEA34.MG.021.11 or APAFIS #3683 No 2015062411489297 for lentigenic mouse generation)

Copyright

© 2020, Guyon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,221
    views
  • 160
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clotilde Guyon
  2. Nada Jmari
  3. Francine Padonou
  4. Yen-Chin Li
  5. Olga Ucar
  6. Noriyuki Fujikado
  7. Fanny Coulpier
  8. Christophe Blanchet
  9. David E Root
  10. Matthieu Giraud
(2020)
Aire-dependent genes undergo Clp1-mediated 3'UTR shortening associated with higher transcript stability in the thymus
eLife 9:e52985.
https://doi.org/10.7554/eLife.52985

Share this article

https://doi.org/10.7554/eLife.52985

Further reading

    1. Genetics and Genomics
    Sugith Badugu, Kshitiza Mohan Dhyani ... Kalappa Muniyappa
    Research Article

    Recent studies have shown that, in human cancer cells, the tetrameric Shieldin complex (comprising REV7, SHLD1, SHLD2, and SHLD3) facilitates non-homologous end-joining (NHEJ) while blocking homologous recombination (HR). Surprisingly, several eukaryotic species lack SHLD1, SHLD2, and SHLD3 orthologs, suggesting that Rev7 may leverage an alternative mechanism to regulate the double-strand break (DSB) repair pathway choice. Exploring this hypothesis, we discovered that Saccharomyces cerevisiae Rev7 physically interacts with the Mre11–Rad50–Xrs2 (MRX) subunits, impedes G-quadruplex DNA synergized HU-induced toxicity, and facilitates NHEJ, while antagonizing HR. Notably, we reveal that a 42-amino acid C-terminal fragment of Rev7 binds to the subunits of MRX complex, protects rev7∆ cells from G-quadruplex DNA-HU-induced toxicity, and promotes NHEJ by blocking HR. By comparison, the N-terminal HORMA domain, a conserved protein–protein interaction module, was dispensable. We further show that the full-length Rev7 impedes Mre11 nuclease and Rad50’s ATPase activities without affecting the latter’s ATP-binding ability. Combined, these results provide unanticipated insights into the functional interaction between the MRX subunits and Rev7 and highlight a previously unrecognized mechanism by which Rev7 facilitates DSB repair via NHEJ, and attenuation of HR, by blocking Mre11 nuclease and Rad50’s ATPase activities in S. cerevisiae.

    1. Genetics and Genomics
    Thomas E Forman, Marcin P Sajek ... Katherine A Fantauzzo
    Research Article

    Signaling through the platelet-derived growth factor receptor alpha (PDGFRα) plays a critical role in craniofacial development. Phosphatidylinositol 3-kinase (PI3K)/Akt is the primary effector of PDGFRα signaling during mouse skeletal development. We previously demonstrated that Akt phosphorylates the RNA-binding protein serine/arginine-rich splicing factor 3 (Srsf3) downstream of PI3K-mediated PDGFRα signaling in mouse embryonic palatal mesenchyme (MEPM) cells, leading to its nuclear translocation. We further showed that ablation of Srsf3 in the murine neural crest lineage results in severe midline facial clefting and widespread alternative RNA splicing (AS) changes. Here, we demonstrated via enhanced UV-crosslinking and immunoprecipitation of MEPM cells that PDGF-AA stimulation leads to preferential binding of Srsf3 to exons and loss of binding to canonical Srsf3 CA-rich motifs. Through the analysis of complementary RNA-seq data, we showed that Srsf3 activity results in the preferential inclusion of exons with increased GC content and lower intron to exon length ratio. We found that Srsf3 activity downstream of PDGFRα signaling leads to retention of the receptor in early endosomes and increases in downstream PI3K-mediated Akt signaling. Taken together, our findings reveal that growth factor-mediated phosphorylation of an RNA-binding protein underlies gene expression regulation necessary for mammalian craniofacial development.