Aire-dependent genes undergo Clp1-mediated 3'UTR shortening associated with higher transcript stability in the thymus
Abstract
The ability of the immune system to avoid autoimmune disease relies on tolerization of thymocytes to self-antigens whose expression and presentation by thymic medullary epithelial cells (mTECs) is controlled predominantly by Aire at the transcriptional level and possibly regulated at other unrecognized levels. Aire-sensitive gene expression is influenced by several molecular factors, some of which belong to the 3'end processing complex, suggesting they might impact transcript stability and levels through an effect on 3'UTR shortening. We discovered that Aire-sensitive genes display a pronounced preference for short-3'UTR transcript isoforms in mTECs, a feature preceding Aire's expression and correlated with the preferential selection of proximal polyA sites by the 3'end processing complex. Through an RNAi screen and generation of a lentigenic mouse, we found that one factor, Clp1, promotes 3'UTR shortening associated with higher transcript stability and expression of Aire-sensitive genes, revealing a post-transcriptional level of control of Aire-activated expression in mTECs.
Data availability
All RNAseq and microarray data are deposited in the NCBI Gene Expression Omnibus database (GEO).
-
WT and Aire-KO mouse MEChi RNAseq profilingNCBI Gene Expression Omnibus, GSE140683.
-
RNAseq profiling of Aire and Ctr-transfected HEK293 cellsNCBI Gene Expression Omnibus, GSE140738.
-
Stability of Aire-upregulated and Aire-neutral transcripts in medullary thymic epithelial cellsNCBI Gene Expression Omnibus, GSE140815.
-
Clp1 knockdown lentigenic mouse generationNCBI Gene Expression Omnibus, GSE140878.
-
RNAseq profiling of Ctr and CLP1 knockdown HEK293 cellsNCBI Gene Expression Omnibus, GSE140993.
-
RNAseq profiling of Ctr and CLP1 knockdown HEK293 cellsNCBI Gene Expression Omnibus, GSE141118.
-
PAR-CLIP CstF-64NCBI Gene Expression Omnibus, GSM917676.
-
Aire-KO MEChi RNAseq profilingNCBI Gene Expression Omnibus, GSE87133.
-
Sirt1 is essential for Aire-mediated induction of central immunological toleranceNCBI Gene Expression Omnibus, GSE68190.
Article and author information
Author details
Funding
Agence Nationale de la Recherche (Research grant,2011-CHEX-001-R12004KK)
- Matthieu Giraud
European Commission (Career Integration Grant,CIG PCIG9-GA-2011-294212)
- Matthieu Giraud
Agence Nationale de la Recherche (Investissements d'Avenir,ANR-10-INBS-09)
- Fanny Coulpier
Agence Nationale de la Recherche (Investissements d'Avenir,ANR-11-INBS-0013)
- Christophe Blanchet
Fondation pour la Recherche Médicale (Graduate Student Fellowship,FDT20150532551)
- Clotilde Guyon
Fondation pour la Recherche Médicale (Bioinformatics engineer grant)
- Yen-Chin Li
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Mice were housed, bred and manipulated in specific-pathogen-free conditions at Cochin Institute according to the guidelines of the French Veterinary Department and under procedures approved by the Paris-Descartes Ethical Committee for Animal Experimentation (decision CEEA34.MG.021.11 or APAFIS #3683 No 2015062411489297 for lentigenic mouse generation)
Copyright
© 2020, Guyon et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,231
- views
-
- 161
- downloads
-
- 13
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Genetics and Genomics
Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.
-
- Genetics and Genomics
- Neuroscience
Continued methodological advances have enabled numerous statistical approaches for the analysis of summary statistics from genome-wide association studies. Genetic correlation analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with significant ‘local’ genetic correlations can be investigated further using state-of-the-art methodologies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide local genetic correlation analysis approach for identifying genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson’s disease, and schizophrenia. The correlation analysis identified several associations between traits, the majority of which were loci in the human leukocyte antigen region. Colocalisation analysis suggested that disease-implicated variants in these loci often differ between traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation analysis protocol designed for this study has been implemented in a flexible analysis pipeline that produces HTML reports and is available at: https://github.com/ThomasPSpargo/COLOC-reporter.