STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells

  1. Jong Wook Kim
  2. Christian Berrios
  3. Miju Kim
  4. Amy E Schade
  5. Guillaume Adelmant
  6. Huwate Yeerna
  7. Emily Damato
  8. Amanda Balboni Iniguez
  9. Laurence Florens
  10. Michael P Washburn
  11. Kim Stegmaier
  12. Nathanael S Gray
  13. Pablo Tamayo
  14. Ole Gjoerup
  15. Jarrod A Marto
  16. James DeCaprio  Is a corresponding author
  17. William C Hahn  Is a corresponding author
  1. Broad Institute of Harvard and MIT, United States
  2. Dana-Farber Cancer Institute, United States
  3. University of California, San Diego, United States
  4. Stowers Institute for Medical Research, United States
  5. Dana-Farber Cancer Institue, United States

Abstract

Alterations involving serine-threonine phosphatase PP2A subunits occur in a range of human cancers and partial loss of PP2A function contributes to cell transformation. Displacement of regulatory B subunits by the SV40 Small T antigen (ST) or mutation/deletion of PP2A subunits alters the abundance and types of PP2A complexes in cells, leading to transformation. Here we show that ST not only displaces common PP2A B subunits but also promotes A-C subunit interactions with alternative B subunits (B', striatins) that are components of the Striatin-interacting phosphatase and kinase (STRIPAK) complex. We found that STRN4, a member of STRIPAK, is associated with ST and is required for ST-PP2A-induced cell transformation. ST recruitment of STRIPAK facilitates PP2A-mediated dephosphorylation of MAP4K4 and induces cell transformation through the activation of the Hippo pathway effector YAP1. These observations identify an unanticipated role of MAP4K4 in transformation and show that the STRIPAK complex regulates PP2A specificity and activity.

Data availability

The RNAseq data for MAP4K4 suppression experiments have been deposited in the Gene Expression Omnibus (GEO) under accession code GSE118272. Raw mass spectrometry data files for SILAC and iTRAQ are available for free download at ftp://massive.ucsd.edu/MSV000084422/. MudPIT mass spectrometry data files are available for download at Massive: ftp://massive.ucsd.edu/MSV000084662/ and ProteomeXchange:http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD016628.

The following data sets were generated

Article and author information

Author details

  1. Jong Wook Kim

    Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3021-7193
  2. Christian Berrios

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  3. Miju Kim

    Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Amy E Schade

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0342-8251
  5. Guillaume Adelmant

    The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  6. Huwate Yeerna

    Division of Medical Genetics, School of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  7. Emily Damato

    Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Amanda Balboni Iniguez

    Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    No competing interests declared.
  9. Laurence Florens

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  10. Michael P Washburn

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7568-2585
  11. Kim Stegmaier

    Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    Kim Stegmaier, has previously consulted for Novartis and Rigel Pharmaceuticals and receives grant funding from Novartis on unrelated topics.
  12. Nathanael S Gray

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Nathanael S Gray, is a founder, science advisory board member (SAB) and equity holder in Gatekeeper, Syros, Petra, C4, B2S and Soltego. Also receives or has received research funding from Novartis, Takeda, Astellas, Taiho, Janssen, Kinogen, Voronoi, Her2llc, Deerfield and Sanofi.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5354-7403
  13. Pablo Tamayo

    Division of Medical Genetics, School of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  14. Ole Gjoerup

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  15. Jarrod A Marto

    The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Jarrod A Marto, serves on the scientific advisory board of 908 Devices.
  16. James DeCaprio

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    For correspondence
    james_decaprio@dfci.harvard.edu
    Competing interests
    James DeCaprio, has served as a consultant to Merck & Co, Inc and has received research funding from Constellation Pharmaceuticals, Inc.
  17. William C Hahn

    Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
    For correspondence
    william_hahn@dfci.harvard.edu
    Competing interests
    William C Hahn, Reviewing editor, eLife, is a consultant for Thermo Fisher, AjuIB, MPM Capital, iTeos, Tyra Biosciences, Frontier Medicines and Parexel. WCH is a founder and serves on the scientific advisory board for KSQ Therapeutics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2840-9791

Funding

National Cancer Institute (P01 CA203655)

  • James DeCaprio
  • William C Hahn

National Cancer Institute (U01 CA217885)

  • Jong Wook Kim
  • Huwate Yeerna
  • Pablo Tamayo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the Dana-Farber Cancer Institute under assurance number A3023-01. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Dana-Farber Cancer Institute (Permit Number:04-101).

Copyright

© 2020, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,603
    views
  • 618
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jong Wook Kim
  2. Christian Berrios
  3. Miju Kim
  4. Amy E Schade
  5. Guillaume Adelmant
  6. Huwate Yeerna
  7. Emily Damato
  8. Amanda Balboni Iniguez
  9. Laurence Florens
  10. Michael P Washburn
  11. Kim Stegmaier
  12. Nathanael S Gray
  13. Pablo Tamayo
  14. Ole Gjoerup
  15. Jarrod A Marto
  16. James DeCaprio
  17. William C Hahn
(2020)
STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells
eLife 9:e53003.
https://doi.org/10.7554/eLife.53003

Share this article

https://doi.org/10.7554/eLife.53003

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Hirokazu Kimura, Kamel Lahouel ... Nicholas Jason Roberts
    Research Article

    Interpretation of variants identified during genetic testing is a significant clinical challenge. In this study, we developed a high-throughput CDKN2A functional assay and characterized all possible human CDKN2A missense variants. We found that 17.7% of all missense variants were functionally deleterious. We also used our functional classifications to assess the performance of in silico models that predict the effect of variants, including recently reported models based on machine learning. Notably, we found that all in silico models performed similarly when compared to our functional classifications with accuracies of 39.5–85.4%. Furthermore, while we found that functionally deleterious variants were enriched within ankyrin repeats, we did not identify any residues where all missense variants were functionally deleterious. Our functional classifications are a resource to aid the interpretation of CDKN2A variants and have important implications for the application of variant interpretation guidelines, particularly the use of in silico models for clinical variant interpretation.

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.