Pre-stimulus phase and amplitude regulation of phase-locked responses is maximized in the critical state

  1. Arthur-Ervin Avramiea  Is a corresponding author
  2. Richard Hardstone
  3. Jan-Matthis Lueckmann
  4. Jan Bim
  5. Huib D Mansvelder
  6. Klaus Linkenkaer-Hansen
  1. Vrije Universiteit Amsterdam, Netherlands
  2. Neuroscience Institute, New York University School of Medicine, United States
  3. Technical University of Munich, Germany
  4. Czech Technical University in Prague, Czech Republic

Abstract

Understanding why identical stimuli give differing neuronal responses and percepts is a central challenge in research on attention and consciousness. Ongoing oscillations reflect functional states that bias processing of incoming signals through amplitude and phase. It is not known, however, whether the effect of phase or amplitude on stimulus processing depends on the long-term global dynamics of the networks generating the oscillations. Here, we show, using a computational model, that the ability of networks to regulate stimulus response based on pre-stimulus activity requires near-critical dynamics—a dynamical state that emerges from networks with balanced excitation and inhibition, and that is characterized by scale-free fluctuations. We also find that networks exhibiting critical oscillations produce differing responses to the largest range of stimulus intensities. Thus, the brain may bring its dynamics close to the critical state whenever such network versatility is required.

Data availability

Source code required to run all simulations, as well as datasets and scripts required to generate all figures presented here, are available on figshare.

The following data sets were generated

Article and author information

Author details

  1. Arthur-Ervin Avramiea

    Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    a.e.avramiea@vu.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0826-8269
  2. Richard Hardstone

    Perception and Brain Dynamics Laboratory, Departments of Neurology, Neuroscience and Physiology, and Radiology, Neuroscience Institute, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7502-9145
  3. Jan-Matthis Lueckmann

    Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan Bim

    Computer Science, Czech Technical University in Prague, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2780-5610
  5. Huib D Mansvelder

    Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1365-5340
  6. Klaus Linkenkaer-Hansen

    Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

Netherlands Organization for Scientific Research (612.001.123)

  • Richard Hardstone
  • Klaus Linkenkaer-Hansen

Netherlands Organization for Scientific Research (406.15.256)

  • Arthur-Ervin Avramiea
  • Klaus Linkenkaer-Hansen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Avramiea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,214
    views
  • 262
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.53016

Further reading

    1. Neuroscience
    Yisi Liu, Pu Wang ... Hongwei Zhou
    Short Report

    The increasing use of tissue clearing techniques underscores the urgent need for cost-effective and simplified deep imaging methods. While traditional inverted confocal microscopes excel in high-resolution imaging of tissue sections and cultured cells, they face limitations in deep imaging of cleared tissues due to refractive index mismatches between the immersion media of objectives and sample container. To overcome these challenges, the RIM-Deep was developed to significantly improve deep imaging capabilities without compromising the normal function of the confocal microscope. This system facilitates deep immunofluorescence imaging of the prefrontal cortex in cleared macaque tissue, extending imaging depth from 2 mm to 5 mm. Applied to an intact and cleared Thy1-EGFP mouse brain, the system allowed for clear axonal visualization at high imaging depth. Moreover, this advancement enables large-scale, deep 3D imaging of intact tissues. In principle, this concept can be extended to any imaging modality, including existing inverted wide-field, confocal, and two-photon microscopy. This would significantly upgrade traditional laboratory configurations and facilitate the study of connectomes in the brain and other tissues.

    1. Neuroscience
    Damian Koevoet, Laura Van Zantwijk ... Christoph Strauch
    Research Article

    What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade (‘saccade costs’). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.