Pre-stimulus phase and amplitude regulation of phase-locked responses is maximized in the critical state

  1. Arthur-Ervin Avramiea
  2. Richard Hardstone
  3. Jan-Matthis Lueckmann
  4. Jan Bim
  5. Huib D Mansvelder
  6. Klaus Linkenkaer-Hansen  Is a corresponding author
  1. Vrije Universiteit Amsterdam, Netherlands
  2. Neuroscience Institute, New York University School of Medicine, United States
  3. Technical University of Munich, Germany
  4. Czech Technical University in Prague, Czech Republic

Abstract

Understanding why identical stimuli give differing neuronal responses and percepts is a central challenge in research on attention and consciousness. Ongoing oscillations reflect functional states that bias processing of incoming signals through amplitude and phase. It is not known, however, whether the effect of phase or amplitude on stimulus processing depends on the long-term global dynamics of the networks generating the oscillations. Here, we show, using a computational model, that the ability of networks to regulate stimulus response based on pre-stimulus activity requires near-critical dynamics—a dynamical state that emerges from networks with balanced excitation and inhibition, and that is characterized by scale-free fluctuations. We also find that networks exhibiting critical oscillations produce differing responses to the largest range of stimulus intensities. Thus, the brain may bring its dynamics close to the critical state whenever such network versatility is required.

Data availability

Source code required to run all simulations, as well as datasets and scripts required to generate all figures presented here, are available on figshare.

The following data sets were generated

Article and author information

Author details

  1. Arthur-Ervin Avramiea

    Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0826-8269
  2. Richard Hardstone

    Perception and Brain Dynamics Laboratory, Departments of Neurology, Neuroscience and Physiology, and Radiology, Neuroscience Institute, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7502-9145
  3. Jan-Matthis Lueckmann

    Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan Bim

    Computer Science, Czech Technical University in Prague, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2780-5610
  5. Huib D Mansvelder

    Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1365-5340
  6. Klaus Linkenkaer-Hansen

    Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    k.linkenkaerhansen@vu.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2140-9780

Funding

Netherlands Organization for Scientific Research (612.001.123)

  • Richard Hardstone
  • Klaus Linkenkaer-Hansen

Netherlands Organization for Scientific Research (406.15.256)

  • Arthur-Ervin Avramiea
  • Klaus Linkenkaer-Hansen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Floris P de Lange, Radboud University, Netherlands

Publication history

  1. Received: October 24, 2019
  2. Accepted: April 20, 2020
  3. Accepted Manuscript published: April 23, 2020 (version 1)
  4. Accepted Manuscript updated: April 27, 2020 (version 2)
  5. Version of Record published: May 12, 2020 (version 3)

Copyright

© 2020, Avramiea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,746
    Page views
  • 215
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arthur-Ervin Avramiea
  2. Richard Hardstone
  3. Jan-Matthis Lueckmann
  4. Jan Bim
  5. Huib D Mansvelder
  6. Klaus Linkenkaer-Hansen
(2020)
Pre-stimulus phase and amplitude regulation of phase-locked responses is maximized in the critical state
eLife 9:e53016.
https://doi.org/10.7554/eLife.53016

Further reading

    1. Neuroscience
    Jessica H Kim et al.
    Research Article Updated

    Food intake behavior is regulated by a network of appetite-inducing and appetite-suppressing neuronal populations throughout the brain. The parasubthalamic nucleus (PSTN), a relatively unexplored population of neurons in the posterior hypothalamus, has been hypothesized to regulate appetite due to its connectivity with other anorexigenic neuronal populations and because these neurons express Fos, a marker of neuronal activation, following a meal. However, the individual cell types that make up the PSTN are not well characterized, nor are their functional roles in food intake behavior. Here, we identify and distinguish between two discrete PSTN subpopulations, those that express tachykinin-1 (PSTNTac1 neurons) and those that express corticotropin-releasing hormone (PSTNCRH neurons), and use a panel of genetically encoded tools in mice to show that PSTNTac1 neurons play an important role in appetite suppression. Both subpopulations increase activity following a meal and in response to administration of the anorexigenic hormones amylin, cholecystokinin (CCK), and peptide YY (PYY). Interestingly, chemogenetic inhibition of PSTNTac1, but not PSTNCRH neurons, reduces the appetite-suppressing effects of these hormones. Consistently, optogenetic and chemogenetic stimulation of PSTNTac1 neurons, but not PSTNCRH neurons, reduces food intake in hungry mice. PSTNTac1 and PSTNCRH neurons project to distinct downstream brain regions, and stimulation of PSTNTac1 projections to individual anorexigenic populations reduces food consumption. Taken together, these results reveal the functional properties and projection patterns of distinct PSTN cell types and demonstrate an anorexigenic role for PSTNTac1 neurons in the hormonal and central regulation of appetite.

    1. Neuroscience
    Nahoko Kuga et al.
    Research Article

    The medial prefrontal cortex and amygdala are involved in the regulation of social behavior and associated with psychiatric diseases but their detailed neurophysiological mechanisms at a network level remain unclear. We recorded local field potentials (LFPs) from the dorsal medial prefrontal cortex (dmPFC) and basolateral amygdala (BLA) while male mice engaged on social behavior. We found that in wild-type mice, both the dmPFC and BLA increased 4–7 Hz oscillation power and decreased 30–60 Hz power when they needed to attend to another target mouse. In mouse models with reduced social interactions, dmPFC 4–7 Hz power further increased especially when they exhibited social avoidance behavior. In contrast, dmPFC and BLA decreased 4–7 Hz power when wild-type mice socially approached a target mouse. Frequency-specific optogenetic manipulations replicating social approach-related LFP patterns restored social interaction behavior in socially deficient mice. These results demonstrate a neurophysiological substrate of the prefrontal cortex and amygdala related to social behavior and provide a unified pathophysiological understanding of neuronal population dynamics underlying social behavioral deficits.