Pre-stimulus phase and amplitude regulation of phase-locked responses is maximized in the critical state

  1. Arthur-Ervin Avramiea
  2. Richard Hardstone
  3. Jan-Matthis Lueckmann
  4. Jan Bim
  5. Huib D Mansvelder
  6. Klaus Linkenkaer-Hansen  Is a corresponding author
  1. Vrije Universiteit Amsterdam, Netherlands
  2. Neuroscience Institute, New York University School of Medicine, United States
  3. Technical University of Munich, Germany
  4. Czech Technical University in Prague, Czech Republic

Abstract

Understanding why identical stimuli give differing neuronal responses and percepts is a central challenge in research on attention and consciousness. Ongoing oscillations reflect functional states that bias processing of incoming signals through amplitude and phase. It is not known, however, whether the effect of phase or amplitude on stimulus processing depends on the long-term global dynamics of the networks generating the oscillations. Here, we show, using a computational model, that the ability of networks to regulate stimulus response based on pre-stimulus activity requires near-critical dynamics—a dynamical state that emerges from networks with balanced excitation and inhibition, and that is characterized by scale-free fluctuations. We also find that networks exhibiting critical oscillations produce differing responses to the largest range of stimulus intensities. Thus, the brain may bring its dynamics close to the critical state whenever such network versatility is required.

Data availability

Source code required to run all simulations, as well as datasets and scripts required to generate all figures presented here, are available on figshare.

The following data sets were generated

Article and author information

Author details

  1. Arthur-Ervin Avramiea

    Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0826-8269
  2. Richard Hardstone

    Perception and Brain Dynamics Laboratory, Departments of Neurology, Neuroscience and Physiology, and Radiology, Neuroscience Institute, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7502-9145
  3. Jan-Matthis Lueckmann

    Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan Bim

    Computer Science, Czech Technical University in Prague, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2780-5610
  5. Huib D Mansvelder

    Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1365-5340
  6. Klaus Linkenkaer-Hansen

    Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    k.linkenkaerhansen@vu.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2140-9780

Funding

Netherlands Organization for Scientific Research (612.001.123)

  • Richard Hardstone
  • Klaus Linkenkaer-Hansen

Netherlands Organization for Scientific Research (406.15.256)

  • Arthur-Ervin Avramiea
  • Klaus Linkenkaer-Hansen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Floris P de Lange, Radboud University, Netherlands

Version history

  1. Received: October 24, 2019
  2. Accepted: April 20, 2020
  3. Accepted Manuscript published: April 23, 2020 (version 1)
  4. Accepted Manuscript updated: April 27, 2020 (version 2)
  5. Version of Record published: May 12, 2020 (version 3)

Copyright

© 2020, Avramiea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,069
    views
  • 244
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arthur-Ervin Avramiea
  2. Richard Hardstone
  3. Jan-Matthis Lueckmann
  4. Jan Bim
  5. Huib D Mansvelder
  6. Klaus Linkenkaer-Hansen
(2020)
Pre-stimulus phase and amplitude regulation of phase-locked responses is maximized in the critical state
eLife 9:e53016.
https://doi.org/10.7554/eLife.53016

Share this article

https://doi.org/10.7554/eLife.53016

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.