Pre-stimulus phase and amplitude regulation of phase-locked responses is maximized in the critical state

  1. Arthur-Ervin Avramiea
  2. Richard Hardstone
  3. Jan-Matthis Lueckmann
  4. Jan Bim
  5. Huib D Mansvelder
  6. Klaus Linkenkaer-Hansen  Is a corresponding author
  1. Vrije Universiteit Amsterdam, Netherlands
  2. Neuroscience Institute, New York University School of Medicine, United States
  3. Technical University of Munich, Germany
  4. Czech Technical University in Prague, Czech Republic

Abstract

Understanding why identical stimuli give differing neuronal responses and percepts is a central challenge in research on attention and consciousness. Ongoing oscillations reflect functional states that bias processing of incoming signals through amplitude and phase. It is not known, however, whether the effect of phase or amplitude on stimulus processing depends on the long-term global dynamics of the networks generating the oscillations. Here, we show, using a computational model, that the ability of networks to regulate stimulus response based on pre-stimulus activity requires near-critical dynamics—a dynamical state that emerges from networks with balanced excitation and inhibition, and that is characterized by scale-free fluctuations. We also find that networks exhibiting critical oscillations produce differing responses to the largest range of stimulus intensities. Thus, the brain may bring its dynamics close to the critical state whenever such network versatility is required.

Data availability

Source code required to run all simulations, as well as datasets and scripts required to generate all figures presented here, are available on figshare.

The following data sets were generated

Article and author information

Author details

  1. Arthur-Ervin Avramiea

    Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0826-8269
  2. Richard Hardstone

    Perception and Brain Dynamics Laboratory, Departments of Neurology, Neuroscience and Physiology, and Radiology, Neuroscience Institute, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7502-9145
  3. Jan-Matthis Lueckmann

    Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan Bim

    Computer Science, Czech Technical University in Prague, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2780-5610
  5. Huib D Mansvelder

    Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1365-5340
  6. Klaus Linkenkaer-Hansen

    Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    k.linkenkaerhansen@vu.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2140-9780

Funding

Netherlands Organization for Scientific Research (612.001.123)

  • Richard Hardstone
  • Klaus Linkenkaer-Hansen

Netherlands Organization for Scientific Research (406.15.256)

  • Arthur-Ervin Avramiea
  • Klaus Linkenkaer-Hansen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Floris P de Lange, Radboud University, Netherlands

Publication history

  1. Received: October 24, 2019
  2. Accepted: April 20, 2020
  3. Accepted Manuscript published: April 23, 2020 (version 1)
  4. Accepted Manuscript updated: April 27, 2020 (version 2)
  5. Version of Record published: May 12, 2020 (version 3)

Copyright

© 2020, Avramiea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,907
    Page views
  • 233
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arthur-Ervin Avramiea
  2. Richard Hardstone
  3. Jan-Matthis Lueckmann
  4. Jan Bim
  5. Huib D Mansvelder
  6. Klaus Linkenkaer-Hansen
(2020)
Pre-stimulus phase and amplitude regulation of phase-locked responses is maximized in the critical state
eLife 9:e53016.
https://doi.org/10.7554/eLife.53016

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Bo Shen, Kenway Louie, Paul W Glimcher
    Research Article

    Inhibition is crucial for brain function, regulating network activity by balancing excitation and implementing gain control. Recent evidence suggests that beyond simply inhibiting excitatory activity, inhibitory neurons can also shape circuit function through disinhibition. While disinhibitory circuit motifs have been implicated in cognitive processes including learning, attentional selection, and input gating, the role of disinhibition is largely unexplored in the study of decision-making. Here, we show that disinhibition provides a simple circuit motif for fast, dynamic control of network state and function. This dynamic control allows a disinhibition-based decision model to reproduce both value normalization and winner-take-all dynamics, the two central features of neurobiological decision-making captured in separate existing models with distinct circuit motifs. In addition, the disinhibition model exhibits flexible attractor dynamics consistent with different forms of persistent activity seen in working memory. Fitting the model to empirical data shows it captures well both the neurophysiological dynamics of value coding and psychometric choice behavior. Furthermore, the biological basis of disinhibition provides a simple mechanism for flexible top-down control of the network states, enabling the circuit to capture diverse task-dependent neural dynamics. These results suggest a biologically plausible unifying mechanism for decision-making and emphasize the importance of local disinhibition in neural processing.

    1. Medicine
    2. Neuroscience
    Gen Li, Binshi Bo ... Xiaojie Duan
    Research Article

    The available treatments for depression have substantial limitations, including low response rates and substantial lag time before a response is achieved. We applied deep brain stimulation (DBS) to the lateral habenula (LHb) of two rat models of depression (Wistar Kyoto rats and lipopolysaccharide-treated rats) and observed an immediate (within seconds to minutes) alleviation of depressive-like symptoms with a high-response rate. Simultaneous functional MRI (fMRI) conducted on the same sets of depressive rats used in behavioral tests revealed DBS-induced activation of multiple regions in afferent and efferent circuitry of the LHb. The activation levels of brain regions connected to the medial LHb (M-LHb) were correlated with the extent of behavioral improvements. Rats with more medial stimulation sites in the LHb exhibited greater antidepressant effects than those with more lateral stimulation sites. These results indicated that the antidromic activation of the limbic system and orthodromic activation of the monoaminergic systems connected to the M-LHb played a critical role in the rapid antidepressant effects of LHb-DBS. This study indicates that M-LHb-DBS might act as a valuable, rapid-acting antidepressant therapeutic strategy for treatment-resistant depression and demonstrates the potential of using fMRI activation of specific brain regions as biomarkers to predict and evaluate antidepressant efficacy.