High-fat diet enhances starvation-induced hyperactivity via sensitizing hunger-sensing neurons in Drosophila

  1. Rui Huang  Is a corresponding author
  2. Tingting Song
  3. Haifeng Su
  4. Zeliang Lai
  5. Wusa Qin
  6. Yinjun Tian
  7. Xuan Dong
  8. Liming Wang  Is a corresponding author
  1. Chongqing University, China
  2. Shenzhen Bay Laboratory, China
  3. Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
  4. Zhejiang University, China

Abstract

The function of the central nervous system to regulate food intake can be disrupted by sustained metabolic challenges such as high-fat diet (HFD), which may contribute to various metabolic disorders. Previously, we showed that a group of octopaminergic (OA) neurons mediated starvation-induced hyperactivity, an important aspect of food-seeking behavior (Yu et al., 2016). Here we find that HFD specifically enhances this behavior. Mechanistically, HFD increases the excitability of these OA neurons to a hunger hormone named adipokinetic hormone (AKH), via increasing the accumulation of AKH receptor (AKHR) in these neurons. Upon HFD, excess dietary lipids are transported by a lipoprotein LTP to enter these OA+AKHR+ neurons via the cognate receptor LpR1, which in turn suppresses autophagy-dependent degradation of AKHR. Taken together, we uncover a mechanism that links HFD, neuronal autophagy, and starvation-induced hyperactivity, providing insight in the reshaping of neural circuitry under metabolic challenges and the progression of metabolic diseases.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE129601 and GSE129602.All behavioral data are uploaded in Supplementary Data File 1.Mass spectrometry data is updated in Supplementary Data File 2.

The following data sets were generated

Article and author information

Author details

  1. Rui Huang

    Chongqing University, Chongqing, China
    For correspondence
    huangrui85@cqu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  2. Tingting Song

    Shenzhen Bay Laboratory, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Haifeng Su

    Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zeliang Lai

    Shenzhen Bay Laboratory, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Wusa Qin

    Shenzhen Bay Laboratory, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yinjun Tian

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xuan Dong

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Liming Wang

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    For correspondence
    lmwang83@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7256-8776

Funding

National Natural Science Foundation of China (31522026)

  • Liming Wang

National Natural Science Foundation of China (31800883)

  • Rui Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,810
    views
  • 767
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rui Huang
  2. Tingting Song
  3. Haifeng Su
  4. Zeliang Lai
  5. Wusa Qin
  6. Yinjun Tian
  7. Xuan Dong
  8. Liming Wang
(2020)
High-fat diet enhances starvation-induced hyperactivity via sensitizing hunger-sensing neurons in Drosophila
eLife 9:e53103.
https://doi.org/10.7554/eLife.53103

Share this article

https://doi.org/10.7554/eLife.53103

Further reading

    1. Neuroscience
    Andrew E Worthy, Joanna T Anderson ... Francisco J Alvarez
    Research Article

    Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets in the mouse according to neurogenesis, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Sequential neurogenesis delineates different V1 subsets: two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8). Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies, and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression, is positioned near the LMC and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins.

    1. Neuroscience
    Kiichi Watanabe, Hui Chiu, David J Anderson
    Tools and Resources

    Monitoring neuronal activity at single-cell resolution in freely moving Drosophila engaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss- or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here, we perform brain-wide mapping of active cells expressing the Immediate Early Gene hr38 using a high-sensitivity/low background fluorescence in situ hybridization (FISH) amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1a cells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH), we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally, we compare the activity of P1a neurons during sequential performance of courtship and aggression, using intronic vs. exonic hr38 probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1a neurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis in Drosophila.