High-fat diet enhances starvation-induced hyperactivity via sensitizing hunger-sensing neurons in Drosophila

  1. Rui Huang  Is a corresponding author
  2. Tingting Song
  3. Haifeng Su
  4. Zeliang Lai
  5. Wusa Qin
  6. Yinjun Tian
  7. Xuan Dong
  8. Liming Wang  Is a corresponding author
  1. Chongqing University, China
  2. Shenzhen Bay Laboratory, China
  3. Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
  4. Zhejiang University, China

Abstract

The function of the central nervous system to regulate food intake can be disrupted by sustained metabolic challenges such as high-fat diet (HFD), which may contribute to various metabolic disorders. Previously, we showed that a group of octopaminergic (OA) neurons mediated starvation-induced hyperactivity, an important aspect of food-seeking behavior (Yu et al., 2016). Here we find that HFD specifically enhances this behavior. Mechanistically, HFD increases the excitability of these OA neurons to a hunger hormone named adipokinetic hormone (AKH), via increasing the accumulation of AKH receptor (AKHR) in these neurons. Upon HFD, excess dietary lipids are transported by a lipoprotein LTP to enter these OA+AKHR+ neurons via the cognate receptor LpR1, which in turn suppresses autophagy-dependent degradation of AKHR. Taken together, we uncover a mechanism that links HFD, neuronal autophagy, and starvation-induced hyperactivity, providing insight in the reshaping of neural circuitry under metabolic challenges and the progression of metabolic diseases.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE129601 and GSE129602.All behavioral data are uploaded in Supplementary Data File 1.Mass spectrometry data is updated in Supplementary Data File 2.

The following data sets were generated

Article and author information

Author details

  1. Rui Huang

    Chongqing University, Chongqing, China
    For correspondence
    huangrui85@cqu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  2. Tingting Song

    Shenzhen Bay Laboratory, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Haifeng Su

    Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zeliang Lai

    Shenzhen Bay Laboratory, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Wusa Qin

    Shenzhen Bay Laboratory, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yinjun Tian

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xuan Dong

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Liming Wang

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    For correspondence
    lmwang83@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7256-8776

Funding

National Natural Science Foundation of China (31522026)

  • Liming Wang

National Natural Science Foundation of China (31800883)

  • Rui Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,942
    views
  • 787
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rui Huang
  2. Tingting Song
  3. Haifeng Su
  4. Zeliang Lai
  5. Wusa Qin
  6. Yinjun Tian
  7. Xuan Dong
  8. Liming Wang
(2020)
High-fat diet enhances starvation-induced hyperactivity via sensitizing hunger-sensing neurons in Drosophila
eLife 9:e53103.
https://doi.org/10.7554/eLife.53103

Share this article

https://doi.org/10.7554/eLife.53103

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.