Brain states govern the spatio-temporal dynamics of resting state functional connectivity

  1. Felipe Aedo-Jury  Is a corresponding author
  2. Miriam Schwalm
  3. Lara Hamzehpour
  4. Albrecht Stroh  Is a corresponding author
  1. Leibniz Institute for Resilience Research, Germany
  2. Johannes Gutenberg University Mainz, Germany

Abstract

Previously, using simultaneous resting-state functional magnetic resonance imaging (fMRI) and photometry-based neuronal calcium recordings in the anesthetized rat, we identified blood oxygenation level-dependent (BOLD) responses directly related to slow calcium waves, revealing a cortex-wide and spatially organized correlate of locally recorded neuronal activity (Schwalm et al., 2017). Here, using the same techniques, we investigate two distinct cortical activity states: persistent activity, in which compartmentalized network dynamics were observed; and slow wave activity, dominated by a cortex-wide BOLD component, suggesting a strong functional coupling of inter-cortical activity. During slow wave activity we find a correlation between the occurring slow wave events and the strength of functional connectivity between different cortical areas. These findings suggest that down-up transitions of neuronal excitability can drive cortex-wide functional connectivity. This study provides further evidence that changes in functional connectivity are dependent on the brain’s current state, directly linked to the generation of slow waves.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. All source data files are available on Dryad Digital repository (https://doi.org/10.5061/dryad.vmcvdncqk). All custom Matlab codes used in these analyses are available at https://github.com/Strohlab/connectivityelife (Aedo-Jury & Stroh, 2020).

The following data sets were generated

Article and author information

Author details

  1. Felipe Aedo-Jury

    Systemic Resilience Mechanisms, Leibniz Institute for Resilience Research, Mainz, Germany
    For correspondence
    felipeaedo@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Miriam Schwalm

    Institute for Pathophysiology, Johannes Gutenberg University Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4162-2298
  3. Lara Hamzehpour

    Institute for Pathophysiology, Johannes Gutenberg University Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Albrecht Stroh

    Institute for Pathophysiology, Johannes Gutenberg University Mainz, Mainz, Germany
    For correspondence
    albrecht.stroh@unimedizin-mainz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9410-4086

Funding

Deutsche Forschungsgemeinschaft (SFB 1193)

  • Albrecht Stroh

Deutsche Forschungsgemeinschaft (SPP 1665)

  • Albrecht Stroh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal husbandry and experimental manipulation were carried out according to animal welfare guidelines of the Johannes Gutenberg-University Mainz and were approved by the Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany. (G14-1-040).

Copyright

© 2020, Aedo-Jury et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,371
    views
  • 434
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felipe Aedo-Jury
  2. Miriam Schwalm
  3. Lara Hamzehpour
  4. Albrecht Stroh
(2020)
Brain states govern the spatio-temporal dynamics of resting state functional connectivity
eLife 9:e53186.
https://doi.org/10.7554/eLife.53186

Share this article

https://doi.org/10.7554/eLife.53186