Distinct roles for S. cerevisiae H2A copies in recombination and repeat stability, with a role for H2A.1 threonine 126

Abstract

CAG/CTG trinuncleotide repeats are fragile sequences that when expanded form DNA secondary structures and cause human disease. We evaluated CAG/CTG repeat stability and repair outcomes in histone H2 mutants in S. cerevisiae. Although the two copies of H2A are nearly identical in amino acid sequence, CAG repeat stability depends on H2A copy 1 (H2A.1) but not copy 2 (H2A.2). H2A.1 promotes high-fidelity homologous recombination, sister chromatid recombination (SCR), and break-induced replication whereas H2A.2 does not share these functions. Both decreased SCR and the increase in CAG expansions were due to the unique Thr126 residue in H2A.1 and hta1Δ or hta1-T126A mutants were epistatic to deletion of the Polδ subunit Pol32, suggesting a role for H2A.1 in D-loop extension. We conclude that H2A.1 plays a greater repair-specific role compared to H2A.2 and may be a first step towards evolution of a repair-specific function for H2AX compared to H2A in mammalian cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Nealia CM House

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  2. Erica J Polleys

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  3. Ishtiaque Quasem

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  4. Marjorie De la Rosa Mejia

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  5. Cailin E Joyce

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    Cailin E Joyce, is affiliated with Agenus Inc. The author has no financial interests to declare.
  6. Oliver Takacsi-Nagy

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    Oliver Takacsi-Nagy, is affiliated with ArsenalBio. The author has no financial interests to declare.
  7. Jocelyn E Krebs

    Department of Biological Sciences, University of Alaska, Anchorage, Anchorage, United States
    Competing interests
    No competing interests declared.
  8. Stephen M Fuchs

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  9. Catherine H Freudenreich

    Department of Biology, Tufts University, Medford, United States
    For correspondence
    catherine.freudenreich@tufts.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1652-2917

Funding

National Institutes of Health (P01GM105473)

  • Catherine H Freudenreich

American Cancer Society (PF-18-125-10-DMC)

  • Erica J Polleys

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, House et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,160
    views
  • 161
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nealia CM House
  2. Erica J Polleys
  3. Ishtiaque Quasem
  4. Marjorie De la Rosa Mejia
  5. Cailin E Joyce
  6. Oliver Takacsi-Nagy
  7. Jocelyn E Krebs
  8. Stephen M Fuchs
  9. Catherine H Freudenreich
(2019)
Distinct roles for S. cerevisiae H2A copies in recombination and repeat stability, with a role for H2A.1 threonine 126
eLife 8:e53362.
https://doi.org/10.7554/eLife.53362

Share this article

https://doi.org/10.7554/eLife.53362

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.