Distinct roles for S. cerevisiae H2A copies in recombination and repeat stability, with a role for H2A.1 threonine 126

Abstract

CAG/CTG trinuncleotide repeats are fragile sequences that when expanded form DNA secondary structures and cause human disease. We evaluated CAG/CTG repeat stability and repair outcomes in histone H2 mutants in S. cerevisiae. Although the two copies of H2A are nearly identical in amino acid sequence, CAG repeat stability depends on H2A copy 1 (H2A.1) but not copy 2 (H2A.2). H2A.1 promotes high-fidelity homologous recombination, sister chromatid recombination (SCR), and break-induced replication whereas H2A.2 does not share these functions. Both decreased SCR and the increase in CAG expansions were due to the unique Thr126 residue in H2A.1 and hta1Δ or hta1-T126A mutants were epistatic to deletion of the Polδ subunit Pol32, suggesting a role for H2A.1 in D-loop extension. We conclude that H2A.1 plays a greater repair-specific role compared to H2A.2 and may be a first step towards evolution of a repair-specific function for H2AX compared to H2A in mammalian cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Nealia CM House

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  2. Erica J Polleys

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  3. Ishtiaque Quasem

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  4. Marjorie De la Rosa Mejia

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  5. Cailin E Joyce

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    Cailin E Joyce, is affiliated with Agenus Inc. The author has no financial interests to declare.
  6. Oliver Takacsi-Nagy

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    Oliver Takacsi-Nagy, is affiliated with ArsenalBio. The author has no financial interests to declare.
  7. Jocelyn E Krebs

    Department of Biological Sciences, University of Alaska, Anchorage, Anchorage, United States
    Competing interests
    No competing interests declared.
  8. Stephen M Fuchs

    Department of Biology, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  9. Catherine H Freudenreich

    Department of Biology, Tufts University, Medford, United States
    For correspondence
    catherine.freudenreich@tufts.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1652-2917

Funding

National Institutes of Health (P01GM105473)

  • Catherine H Freudenreich

American Cancer Society (PF-18-125-10-DMC)

  • Erica J Polleys

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wolf-Dietrich Heyer, University of California, Davis, United States

Version history

  1. Received: November 6, 2019
  2. Accepted: November 26, 2019
  3. Accepted Manuscript published: December 5, 2019 (version 1)
  4. Version of Record published: December 23, 2019 (version 2)

Copyright

© 2019, House et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,105
    views
  • 157
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nealia CM House
  2. Erica J Polleys
  3. Ishtiaque Quasem
  4. Marjorie De la Rosa Mejia
  5. Cailin E Joyce
  6. Oliver Takacsi-Nagy
  7. Jocelyn E Krebs
  8. Stephen M Fuchs
  9. Catherine H Freudenreich
(2019)
Distinct roles for S. cerevisiae H2A copies in recombination and repeat stability, with a role for H2A.1 threonine 126
eLife 8:e53362.
https://doi.org/10.7554/eLife.53362

Share this article

https://doi.org/10.7554/eLife.53362

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.