Suppressing proteasome mediated processing of Topoisomerase II DNA-protein complexes preserves genome integrity

  1. Nicholas Sciascia
  2. Wei Wu
  3. Dali Zong
  4. Yilun Sun
  5. Nancy Wong
  6. Sam John
  7. Darawalee Wangsa
  8. Thomas Ried
  9. Samuel F Bunting
  10. Yves Pommier
  11. André Nussenzweig  Is a corresponding author
  1. National Cancer Institute, NIH, United States
  2. Rutgers University, United States

Abstract

Topoisomerase II (TOP2) relieves topological stress in DNA by introducing double-strand breaks (DSBs) via a transient, covalently linked TOP2 DNA-protein intermediate, termed TOP2 cleavage complex (TOP2cc). TOP2ccs are normally rapidly reversible, but can be stabilized by TOP2 poisons, such as the chemotherapeutic agent etoposide (ETO). TOP2 poisons have shown significant variability in their therapeutic effectiveness across different cancers for reasons that remain to be determined. One potential explanation for the differential cellular response to these drugs is in the manner by which cells process TOP2ccs. Cells are thought to remove TOP2ccs primarily by proteolytic degradation followed by DNA DSB repair. Here, we show that proteasome-mediated repair of TOP2cc is highly error-prone. Pre-treating primary splenic mouse B-cells with proteasome inhibitors prevented the proteolytic processing of trapped TOP2ccs, suppressed the DNA damage response (DDR) and completely protected cells from ETO-induced genome instability, thereby preserving cellular viability. When degradation of TOP2cc was suppressed, the TOP2 enzyme uncoupled itself from the DNA following ETO washout, in an error-free manner. This suggests a potential mechanism of developing resistance to topoisomerase poisons by ensuring rapid TOP2cc reversal.

Data availability

Sequencing data has been deposited in GEO under the accession code GSE140372

The following data sets were generated

Article and author information

Author details

  1. Nicholas Sciascia

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4169-4929
  2. Wei Wu

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dali Zong

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yilun Sun

    Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nancy Wong

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sam John

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Darawalee Wangsa

    Genetics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Ried

    Genetics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Samuel F Bunting

    Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yves Pommier

    Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. André Nussenzweig

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    For correspondence
    andre_nussenzweig@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8952-7268

Funding

National Institutes of Health (Intramural Research Program)

  • André Nussenzweig

Ellison Medical Foundation (Senior Scholar in Aging Award AG-SS- 2633-11)

  • André Nussenzweig

Department of Defense Idea Expansion Award (W81XWH-15-2-006)

  • André Nussenzweig

Department of Defense Idea Breakthrough Award (W81XWH-16-1-599)

  • André Nussenzweig

Alex Lemonade Stand Foundation Award

  • André Nussenzweig

National Institutes of Health (Intramural FLEX Award)

  • André Nussenzweig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse breeding and experimentation followed protocols approved by the National Institutes of Health Institutional Animal Care and Use Committee (Protocol Numbers: EIB-064-3 and 17-042).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,075
    views
  • 511
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.53447

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Jiale Zhou, Ding Zhao ... Zhanjun Li
    Research Article

    5-Methylcytosine (m5C) is one of the posttranscriptional modifications in mRNA and is involved in the pathogenesis of various diseases. However, the capacity of existing assays for accurately and comprehensively transcriptome-wide m5C mapping still needs improvement. Here, we develop a detection method named DRAM (deaminase and reader protein assisted RNA methylation analysis), in which deaminases (APOBEC1 and TadA-8e) are fused with m5C reader proteins (ALYREF and YBX1) to identify the m5C sites through deamination events neighboring the methylation sites. This antibody-free and bisulfite-free approach provides transcriptome-wide editing regions which are highly overlapped with the publicly available bisulfite-sequencing (BS-seq) datasets and allows for a more stable and comprehensive identification of the m5C loci. In addition, DRAM system even supports ultralow input RNA (10 ng). We anticipate that the DRAM system could pave the way for uncovering further biological functions of m5C modifications.