1. Genetics and Genomics
Download icon

Suppressing proteasome mediated processing of Topoisomerase II DNA-protein complexes preserves genome integrity

  1. Nicholas Sciascia
  2. Wei Wu
  3. Dali Zong
  4. Yilun Sun
  5. Nancy Wong
  6. Sam John
  7. Darawalee Wangsa
  8. Thomas Ried
  9. Samuel F Bunting
  10. Yves Pommier
  11. André Nussenzweig  Is a corresponding author
  1. National Cancer Institute, NIH, United States
  2. Rutgers University, United States
Research Article
  • Cited 7
  • Views 1,852
  • Annotations
Cite this article as: eLife 2020;9:e53447 doi: 10.7554/eLife.53447

Abstract

Topoisomerase II (TOP2) relieves topological stress in DNA by introducing double-strand breaks (DSBs) via a transient, covalently linked TOP2 DNA-protein intermediate, termed TOP2 cleavage complex (TOP2cc). TOP2ccs are normally rapidly reversible, but can be stabilized by TOP2 poisons, such as the chemotherapeutic agent etoposide (ETO). TOP2 poisons have shown significant variability in their therapeutic effectiveness across different cancers for reasons that remain to be determined. One potential explanation for the differential cellular response to these drugs is in the manner by which cells process TOP2ccs. Cells are thought to remove TOP2ccs primarily by proteolytic degradation followed by DNA DSB repair. Here, we show that proteasome-mediated repair of TOP2cc is highly error-prone. Pre-treating primary splenic mouse B-cells with proteasome inhibitors prevented the proteolytic processing of trapped TOP2ccs, suppressed the DNA damage response (DDR) and completely protected cells from ETO-induced genome instability, thereby preserving cellular viability. When degradation of TOP2cc was suppressed, the TOP2 enzyme uncoupled itself from the DNA following ETO washout, in an error-free manner. This suggests a potential mechanism of developing resistance to topoisomerase poisons by ensuring rapid TOP2cc reversal.

Data availability

Sequencing data has been deposited in GEO under the accession code GSE140372

The following data sets were generated

Article and author information

Author details

  1. Nicholas Sciascia

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4169-4929
  2. Wei Wu

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dali Zong

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yilun Sun

    Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nancy Wong

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sam John

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Darawalee Wangsa

    Genetics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Ried

    Genetics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Samuel F Bunting

    Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yves Pommier

    Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. André Nussenzweig

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    For correspondence
    andre_nussenzweig@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8952-7268

Funding

National Institutes of Health (Intramural Research Program)

  • André Nussenzweig

Ellison Medical Foundation (Senior Scholar in Aging Award AG-SS- 2633-11)

  • André Nussenzweig

Department of Defense Idea Expansion Award (W81XWH-15-2-006)

  • André Nussenzweig

Department of Defense Idea Breakthrough Award (W81XWH-16-1-599)

  • André Nussenzweig

Alex Lemonade Stand Foundation Award

  • André Nussenzweig

National Institutes of Health (Intramural FLEX Award)

  • André Nussenzweig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse breeding and experimentation followed protocols approved by the National Institutes of Health Institutional Animal Care and Use Committee (Protocol Numbers: EIB-064-3 and 17-042).

Reviewing Editor

  1. Maureen Murphy, The Wistar Institute, United States

Publication history

  1. Received: November 8, 2019
  2. Accepted: February 12, 2020
  3. Accepted Manuscript published: February 14, 2020 (version 1)
  4. Version of Record published: March 23, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,852
    Page views
  • 358
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Mohd Anisul et al.
    Research Article Updated

    Background:

    The virus SARS-CoV-2 can exploit biological vulnerabilities (e.g. host proteins) in susceptible hosts that predispose to the development of severe COVID-19.

    Methods:

    To identify host proteins that may contribute to the risk of severe COVID-19, we undertook proteome-wide genetic colocalisation tests, and polygenic (pan) and cis-Mendelian randomisation analyses leveraging publicly available protein and COVID-19 datasets.

    Results:

    Our analytic approach identified several known targets (e.g. ABO, OAS1), but also nominated new proteins such as soluble Fas (colocalisation probability >0.9, p=1 × 10-4), implicating Fas-mediated apoptosis as a potential target for COVID-19 risk. The polygenic (pan) and cis-Mendelian randomisation analyses showed consistent associations of genetically predicted ABO protein with several COVID-19 phenotypes. The ABO signal is highly pleiotropic, and a look-up of proteins associated with the ABO signal revealed that the strongest association was with soluble CD209. We demonstrated experimentally that CD209 directly interacts with the spike protein of SARS-CoV-2, suggesting a mechanism that could explain the ABO association with COVID-19.

    Conclusions:

    Our work provides a prioritised list of host targets potentially exploited by SARS-CoV-2 and is a precursor for further research on CD209 and FAS as therapeutically tractable targets for COVID-19.

    Funding:

    MAK, JSc, JH, AB, DO, MC, EMM, MG, ID were funded by Open Targets. J.Z. and T.R.G were funded by the UK Medical Research Council Integrative Epidemiology Unit (MC_UU_00011/4). JSh and GJW were funded by the Wellcome Trust Grant 206194. This research was funded in part by the Wellcome Trust [Grant 206194]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

    1. Genetics and Genomics
    Clara Bouyx et al.
    Research Article Updated

    Fungal adhesins (Als) or flocculins are family of cell surface proteins that mediate adhesion to diverse biotic and abiotic surfaces. A striking characteristic of Als proteins originally identified in the pathogenic Candida albicans is to form functional amyloids that mediate cis-interaction leading to the formation of adhesin nanodomains and trans-interaction between amyloid sequences of opposing cells. In this report, we show that flocculins encoded by FLO11 in Saccharomyces cerevisiae behave like adhesins in C. albicans. To do so, we show that the formation of nanodomains under an external physical force requires a threshold number of amyloid-forming sequences in the Flo11 protein. Then, using a genome editing approach, we constructed strains expressing variants of the Flo11 protein under the endogenous FLO11 promoter, leading to the demonstration that the loss of amyloid-forming sequences strongly reduces cell-cell interaction but has no effect on either plastic adherence or invasive growth in agar, both phenotypes being dependent on the N- and C-terminal ends of Flo11p. Finally, we show that the location of Flo11 is not altered either by the absence of amyloid-forming sequences or by the removal of the N- or C-terminus of the protein.