1. Genetics and Genomics
Download icon

Suppressing proteasome mediated processing of Topoisomerase II DNA-protein complexes preserves genome integrity

  1. Nicholas Sciascia
  2. Wei Wu
  3. Dali Zong
  4. Yilun Sun
  5. Nancy Wong
  6. Sam John
  7. Darawalee Wangsa
  8. Thomas Ried
  9. Samuel F Bunting
  10. Yves Pommier
  11. André Nussenzweig  Is a corresponding author
  1. National Cancer Institute, NIH, United States
  2. Rutgers University, United States
Research Article
  • Cited 0
  • Views 406
  • Annotations
Cite this article as: eLife 2020;9:e53447 doi: 10.7554/eLife.53447

Abstract

Topoisomerase II (TOP2) relieves topological stress in DNA by introducing double-strand breaks (DSBs) via a transient, covalently linked TOP2 DNA-protein intermediate, termed TOP2 cleavage complex (TOP2cc). TOP2ccs are normally rapidly reversible, but can be stabilized by TOP2 poisons, such as the chemotherapeutic agent etoposide (ETO). TOP2 poisons have shown significant variability in their therapeutic effectiveness across different cancers for reasons that remain to be determined. One potential explanation for the differential cellular response to these drugs is in the manner by which cells process TOP2ccs. Cells are thought to remove TOP2ccs primarily by proteolytic degradation followed by DNA DSB repair. Here, we show that proteasome-mediated repair of TOP2cc is highly error-prone. Pre-treating primary splenic mouse B-cells with proteasome inhibitors prevented the proteolytic processing of trapped TOP2ccs, suppressed the DNA damage response (DDR) and completely protected cells from ETO-induced genome instability, thereby preserving cellular viability. When degradation of TOP2cc was suppressed, the TOP2 enzyme uncoupled itself from the DNA following ETO washout, in an error-free manner. This suggests a potential mechanism of developing resistance to topoisomerase poisons by ensuring rapid TOP2cc reversal.

Article and author information

Author details

  1. Nicholas Sciascia

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4169-4929
  2. Wei Wu

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dali Zong

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yilun Sun

    Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nancy Wong

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sam John

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Darawalee Wangsa

    Genetics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Ried

    Genetics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Samuel F Bunting

    Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yves Pommier

    Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. André Nussenzweig

    Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States
    For correspondence
    andre_nussenzweig@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8952-7268

Funding

National Institutes of Health (Intramural Research Program)

  • André Nussenzweig

Ellison Medical Foundation (Senior Scholar in Aging Award AG-SS- 2633-11)

  • André Nussenzweig

Department of Defense Idea Expansion Award (W81XWH-15-2-006)

  • André Nussenzweig

Department of Defense Idea Breakthrough Award (W81XWH-16-1-599)

  • André Nussenzweig

Alex Lemonade Stand Foundation Award

  • André Nussenzweig

National Institutes of Health (Intramural FLEX Award)

  • André Nussenzweig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse breeding and experimentation followed protocols approved by the National Institutes of Health Institutional Animal Care and Use Committee (Protocol Numbers: EIB-064-3 and 17-042).

Reviewing Editor

  1. Maureen Murphy, The Wistar Institute, United States

Publication history

  1. Received: November 8, 2019
  2. Accepted: February 12, 2020
  3. Accepted Manuscript published: February 14, 2020 (version 1)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 406
    Page views
  • 86
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Fillip Port et al.
    Tools and Resources
    1. Evolutionary Biology
    2. Genetics and Genomics
    Marco Fumasoni, Andrew W Murray
    Research Article