Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control

  1. Vinod Menon  Is a corresponding author
  2. Guillermo Gallardo
  3. Mark A Pinsk
  4. Van-Dang Nguyen
  5. Jing-Rebecca Li
  6. Weidong Cai
  7. Demian Wassermann  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  3. Princeton University, United States
  4. Royal Institute of Technology in Stockholm, Sweden
  5. Inria Centre de Recherche Saclay Île-de-France, France

Abstract

The human insular cortex is a heterogeneous brain structure which plays an integrative role in guiding behavior. The cytoarchitectonic organization of the human insula has been investigated over the last century using postmortem brains but there has been little progress in noninvasive in vivo mapping of its microstructure and large-scale functional circuitry. Quantitative modeling of multi-shell diffusion MRI data from 413 participants revealed that human insula microstructure differs significantly across subdivisions that serve distinct cognitive and affective functions. Insular microstructural organization was mirrored in its functionally interconnected circuits with the anterior cingulate cortex that anchors the salience network, a system important for adaptive switching of cognitive control systems. Furthermore, insular microstructural features, confirmed in Macaca mulatta, were linked to behavior and predicted individual differences in cognitive control ability. Our findings open new possibilities for probing psychiatric and neurological disorders impacted by insular cortex dysfunction, including autism, schizophrenia, and fronto-temporal dementia.

Data availability

All data used in this study is available in open-source databases. The human data comes from the Human Connectome Project, the primate data is available at the INDI Primate Data Exchange, and the three-dimensional neuronal models are available from the NeuroMorpho website. All custom code is available on GitHub accesible through the Zenodo DOI: 10.5281/zenodo.3759708. All code was developed based on open-source, publicly available software packages.

The following data sets were generated

Article and author information

Author details

  1. Vinod Menon

    Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States
    For correspondence
    menon@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Guillermo Gallardo

    Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark A Pinsk

    Scully Center for the Neuroscience of Mind & Behavior Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Van-Dang Nguyen

    Computer Science, Royal Institute of Technology in Stockholm, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Jing-Rebecca Li

    Defi, Inria Centre de Recherche Saclay Île-de-France, Palaiseau, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Weidong Cai

    Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Demian Wassermann

    Parietal, Inria Centre de Recherche Saclay Île-de-France, Palaiseau, France
    For correspondence
    demian.wassermann@inria.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5194-6056

Funding

European Commission (NeuroLang -- 757672)

  • Demian Wassermann

National Institutes of Health (HD094623,HD059205,MH084164)

  • Vinod Menon

National Institutes of Health (MH105625)

  • Weidong Cai

Inria (LargeBrainNets)

  • Demian Wassermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal data was obtained from the INDI-Prime primate data exchange database collection (http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html) . All methods and procedures were approved by the Princeton University IACUC

Human subjects: Data was obtained from the HCP database. Informed consent for this study was not explicitly required. However, subjects signed a written informed consent when the database was constituted. IRB approval was obtained for the database construction with the following details: Mapping the Human Connectome: Structure, Function, and HeritabilityIRB # 201204036

Copyright

© 2020, Menon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,389
    views
  • 562
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vinod Menon
  2. Guillermo Gallardo
  3. Mark A Pinsk
  4. Van-Dang Nguyen
  5. Jing-Rebecca Li
  6. Weidong Cai
  7. Demian Wassermann
(2020)
Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control
eLife 9:e53470.
https://doi.org/10.7554/eLife.53470

Share this article

https://doi.org/10.7554/eLife.53470

Further reading

    1. Neuroscience
    Mathias Guayasamin, Lewis R Depaauw-Holt ... Ciaran Murphy-Royal
    Research Article

    Early-life stress can have lifelong consequences, enhancing stress susceptibility and resulting in behavioural and cognitive deficits. While the effects of early-life stress on neuronal function have been well-described, we still know very little about the contribution of non-neuronal brain cells. Investigating the complex interactions between distinct brain cell types is critical to fully understand how cellular changes manifest as behavioural deficits following early-life stress. Here, using male and female mice we report that early-life stress induces anxiety-like behaviour and fear generalisation in an amygdala-dependent learning and memory task. These behavioural changes were associated with impaired synaptic plasticity, increased neural excitability, and astrocyte hypofunction. Genetic perturbation of amygdala astrocyte function by either reducing astrocyte calcium activity or reducing astrocyte network function was sufficient to replicate cellular, synaptic, and fear memory generalisation associated with early-life stress. Our data reveal a role of astrocytes in tuning emotionally salient memory and provide mechanistic links between early-life stress, astrocyte hypofunction, and behavioural deficits.

    1. Neuroscience
    Alessandro Piccin, Anne-Emilie Allain ... Angelo Contarino
    Research Article

    Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.