Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control

  1. Vinod Menon  Is a corresponding author
  2. Guillermo Gallardo
  3. Mark A Pinsk
  4. Van-Dang Nguyen
  5. Jing-Rebecca Li
  6. Weidong Cai
  7. Demian Wassermann  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  3. Princeton University, United States
  4. Royal Institute of Technology in Stockholm, Sweden
  5. Inria Centre de Recherche Saclay Île-de-France, France

Abstract

The human insular cortex is a heterogeneous brain structure which plays an integrative role in guiding behavior. The cytoarchitectonic organization of the human insula has been investigated over the last century using postmortem brains but there has been little progress in noninvasive in vivo mapping of its microstructure and large-scale functional circuitry. Quantitative modeling of multi-shell diffusion MRI data from 413 participants revealed that human insula microstructure differs significantly across subdivisions that serve distinct cognitive and affective functions. Insular microstructural organization was mirrored in its functionally interconnected circuits with the anterior cingulate cortex that anchors the salience network, a system important for adaptive switching of cognitive control systems. Furthermore, insular microstructural features, confirmed in Macaca mulatta, were linked to behavior and predicted individual differences in cognitive control ability. Our findings open new possibilities for probing psychiatric and neurological disorders impacted by insular cortex dysfunction, including autism, schizophrenia, and fronto-temporal dementia.

Data availability

All data used in this study is available in open-source databases. The human data comes from the Human Connectome Project, the primate data is available at the INDI Primate Data Exchange, and the three-dimensional neuronal models are available from the NeuroMorpho website. All custom code is available on GitHub accesible through the Zenodo DOI: 10.5281/zenodo.3759708. All code was developed based on open-source, publicly available software packages.

The following data sets were generated

Article and author information

Author details

  1. Vinod Menon

    Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States
    For correspondence
    menon@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Guillermo Gallardo

    Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark A Pinsk

    Scully Center for the Neuroscience of Mind & Behavior Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Van-Dang Nguyen

    Computer Science, Royal Institute of Technology in Stockholm, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Jing-Rebecca Li

    Defi, Inria Centre de Recherche Saclay Île-de-France, Palaiseau, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Weidong Cai

    Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Demian Wassermann

    Parietal, Inria Centre de Recherche Saclay Île-de-France, Palaiseau, France
    For correspondence
    demian.wassermann@inria.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5194-6056

Funding

European Commission (NeuroLang -- 757672)

  • Demian Wassermann

National Institutes of Health (HD094623,HD059205,MH084164)

  • Vinod Menon

National Institutes of Health (MH105625)

  • Weidong Cai

Inria (LargeBrainNets)

  • Demian Wassermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal data was obtained from the INDI-Prime primate data exchange database collection (http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html) . All methods and procedures were approved by the Princeton University IACUC

Human subjects: Data was obtained from the HCP database. Informed consent for this study was not explicitly required. However, subjects signed a written informed consent when the database was constituted. IRB approval was obtained for the database construction with the following details: Mapping the Human Connectome: Structure, Function, and HeritabilityIRB # 201204036

Copyright

© 2020, Menon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,449
    views
  • 569
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vinod Menon
  2. Guillermo Gallardo
  3. Mark A Pinsk
  4. Van-Dang Nguyen
  5. Jing-Rebecca Li
  6. Weidong Cai
  7. Demian Wassermann
(2020)
Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control
eLife 9:e53470.
https://doi.org/10.7554/eLife.53470

Share this article

https://doi.org/10.7554/eLife.53470

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.