Abstract

In all living organisms, it is essential to transmit genetic information faithfully to the next generation. The SMC-ParAB-parS system is widely employed for chromosome segregation in bacteria. A DNA-binding protein ParB nucleates on parS sites and must associate with neighboring DNA, a process known as spreading, to enable efficient chromosome segregation. Despite its importance, how the initial few ParB molecules nucleating at parS sites recruit hundreds of further ParB to spread is not fully understood. Here, we reconstitute a parS-dependent ParB spreading event using purified proteins from Caulobacter crescentus and show that CTP is required for spreading. We further show that ParB spreading requires a closed DNA substrate, and a DNA-binding transcriptional regulator can act as a roadblock to attenuate spreading unidirectionally in vitro. Our biochemical reconstitutions recapitulate many observed in vivo properties of ParB and opens up avenues to investigate the interactions between ParB-parS with ParA and SMC.

Data availability

No deep sequencing data or X-ray crystallography data were generated during this study. All other data (BLI, uncropped gel images etc...) are included in the manuscript, figures, and source data files.

Article and author information

Author details

  1. Adam SB Jalal

    Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Ngat T Tran

    Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Tung BK Le

    Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
    For correspondence
    tung.le@jic.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4764-8851

Funding

Biotechnology and Biological Sciences Research Council (BB/P018165/1)

  • Tung BK Le

Royal Society (UF140053)

  • Tung BK Le

Biotechnology and Biological Sciences Research Council (BBS/E/J/000PR9791)

  • Ngat T Tran
  • Tung BK Le

Royal Society (RG150448)

  • Adam SB Jalal
  • Tung BK Le

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Jalal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,611
    views
  • 428
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adam SB Jalal
  2. Ngat T Tran
  3. Tung BK Le
(2020)
ParB spreading on DNA requires cytidine triphosphate in vitro
eLife 9:e53515.
https://doi.org/10.7554/eLife.53515

Share this article

https://doi.org/10.7554/eLife.53515

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article Updated

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.