Structural basis for ion selectivity in TMEM175 K+ channels

  1. Janine D Brunner  Is a corresponding author
  2. Roman P Jakob
  3. Tobias Schulze
  4. Yvonne Neldner
  5. Anna Moroni
  6. Gerhard Thiel
  7. Timm Maier
  8. Stephan Schenck  Is a corresponding author
  1. VIB, Belgium
  2. University of Basel, Switzerland
  3. Technische Universität Darmstadt, Germany
  4. University Hospital Zürich, Switzerland
  5. University of Milan, Italy

Abstract

The TMEM175 family constitutes recently discovered K+ channels that are important for autophagosome turnover and lysosomal pH regulation and are associated with the early onset of Parkinson Disease. TMEM175 channels lack a P-loop selectivity filter, a hallmark of all known K+ channels, raising the question how selectivity is achieved. Here, we report the X-ray structure of a closed bacterial TMEM175 channel in complex with a nanobody fusion-protein disclosing bound K+ ions. Our analysis revealed that a highly conserved layer of threonine residues in the pore conveys a basal K+ selectivity. An additional layer comprising two serines in human TMEM175 increases selectivity further and renders this channel sensitive to 4-aminopyridine and Zn2+. Our findings suggest that large hydrophobic side chains occlude the pore, forming a physical gate, and that channel opening by iris-like motions simultaneously relocates the gate and exposes the otherwise concealed selectivity filter to the pore lumen.

Data availability

Atomic coordinates have been deposited at the Protein Data Bank with thefollowing unique identifiers: 6HD8, 6HD9, 6HDA, 6HDB, 6HDC, 6SWR.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Janine D Brunner

    VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
    For correspondence
    janine.brunner@vub.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4237-9322
  2. Roman P Jakob

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Tobias Schulze

    Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Yvonne Neldner

    Department of Trauma, University Hospital Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Moroni

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1860-406X
  6. Gerhard Thiel

    Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Timm Maier

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7459-1363
  8. Stephan Schenck

    VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
    For correspondence
    stephan.schenck@vub.be
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 European Research Council (Advanced Grant 495 (AdG) n. 695078 noMAGIC)

  • Anna Moroni
  • Gerhard Thiel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Brunner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,321
    views
  • 1,538
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janine D Brunner
  2. Roman P Jakob
  3. Tobias Schulze
  4. Yvonne Neldner
  5. Anna Moroni
  6. Gerhard Thiel
  7. Timm Maier
  8. Stephan Schenck
(2020)
Structural basis for ion selectivity in TMEM175 K+ channels
eLife 9:e53683.
https://doi.org/10.7554/eLife.53683

Share this article

https://doi.org/10.7554/eLife.53683

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.