Structural basis for ion selectivity in TMEM175 K+ channels

  1. Janine D Brunner  Is a corresponding author
  2. Roman P Jakob
  3. Tobias Schulze
  4. Yvonne Neldner
  5. Anna Moroni
  6. Gerhard Thiel
  7. Timm Maier
  8. Stephan Schenck  Is a corresponding author
  1. VIB, Belgium
  2. University of Basel, Switzerland
  3. Technische Universität Darmstadt, Germany
  4. University Hospital Zürich, Switzerland
  5. University of Milan, Italy

Abstract

The TMEM175 family constitutes recently discovered K+ channels that are important for autophagosome turnover and lysosomal pH regulation and are associated with the early onset of Parkinson Disease. TMEM175 channels lack a P-loop selectivity filter, a hallmark of all known K+ channels, raising the question how selectivity is achieved. Here, we report the X-ray structure of a closed bacterial TMEM175 channel in complex with a nanobody fusion-protein disclosing bound K+ ions. Our analysis revealed that a highly conserved layer of threonine residues in the pore conveys a basal K+ selectivity. An additional layer comprising two serines in human TMEM175 increases selectivity further and renders this channel sensitive to 4-aminopyridine and Zn2+. Our findings suggest that large hydrophobic side chains occlude the pore, forming a physical gate, and that channel opening by iris-like motions simultaneously relocates the gate and exposes the otherwise concealed selectivity filter to the pore lumen.

Data availability

Atomic coordinates have been deposited at the Protein Data Bank with thefollowing unique identifiers: 6HD8, 6HD9, 6HDA, 6HDB, 6HDC, 6SWR.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Janine D Brunner

    VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
    For correspondence
    janine.brunner@vub.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4237-9322
  2. Roman P Jakob

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Tobias Schulze

    Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Yvonne Neldner

    Department of Trauma, University Hospital Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Moroni

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1860-406X
  6. Gerhard Thiel

    Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Timm Maier

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7459-1363
  8. Stephan Schenck

    VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
    For correspondence
    stephan.schenck@vub.be
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 European Research Council (Advanced Grant 495 (AdG) n. 695078 noMAGIC)

  • Anna Moroni
  • Gerhard Thiel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Brunner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,156
    views
  • 1,528
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janine D Brunner
  2. Roman P Jakob
  3. Tobias Schulze
  4. Yvonne Neldner
  5. Anna Moroni
  6. Gerhard Thiel
  7. Timm Maier
  8. Stephan Schenck
(2020)
Structural basis for ion selectivity in TMEM175 K+ channels
eLife 9:e53683.
https://doi.org/10.7554/eLife.53683

Share this article

https://doi.org/10.7554/eLife.53683

Further reading

    1. Structural Biology and Molecular Biophysics
    Julia Belyaeva, Matthias Elgeti
    Review Article

    Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure–function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.

    1. Structural Biology and Molecular Biophysics
    Bradley P Clarke, Alexia E Angelos ... Yi Ren
    Research Article

    In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5′ end with a 7-methylguanosine (m7G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism, including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5′ end of mRNA. However, the molecular mechanism for CBC-mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.