Structural basis for ion selectivity in TMEM175 K+ channels

  1. Janine D Brunner  Is a corresponding author
  2. Roman P Jakob
  3. Tobias Schulze
  4. Yvonne Neldner
  5. Anna Moroni
  6. Gerhard Thiel
  7. Timm Maier
  8. Stephan Schenck  Is a corresponding author
  1. VIB, Belgium
  2. University of Basel, Switzerland
  3. Technische Universität Darmstadt, Germany
  4. University Hospital Zürich, Switzerland
  5. University of Milan, Italy

Abstract

The TMEM175 family constitutes recently discovered K+ channels that are important for autophagosome turnover and lysosomal pH regulation and are associated with the early onset of Parkinson Disease. TMEM175 channels lack a P-loop selectivity filter, a hallmark of all known K+ channels, raising the question how selectivity is achieved. Here, we report the X-ray structure of a closed bacterial TMEM175 channel in complex with a nanobody fusion-protein disclosing bound K+ ions. Our analysis revealed that a highly conserved layer of threonine residues in the pore conveys a basal K+ selectivity. An additional layer comprising two serines in human TMEM175 increases selectivity further and renders this channel sensitive to 4-aminopyridine and Zn2+. Our findings suggest that large hydrophobic side chains occlude the pore, forming a physical gate, and that channel opening by iris-like motions simultaneously relocates the gate and exposes the otherwise concealed selectivity filter to the pore lumen.

Data availability

Atomic coordinates have been deposited at the Protein Data Bank with thefollowing unique identifiers: 6HD8, 6HD9, 6HDA, 6HDB, 6HDC, 6SWR.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Janine D Brunner

    VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
    For correspondence
    janine.brunner@vub.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4237-9322
  2. Roman P Jakob

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Tobias Schulze

    Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Yvonne Neldner

    Department of Trauma, University Hospital Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Moroni

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1860-406X
  6. Gerhard Thiel

    Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Timm Maier

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7459-1363
  8. Stephan Schenck

    VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
    For correspondence
    stephan.schenck@vub.be
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 European Research Council (Advanced Grant 495 (AdG) n. 695078 noMAGIC)

  • Anna Moroni
  • Gerhard Thiel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Brunner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,373
    views
  • 1,540
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janine D Brunner
  2. Roman P Jakob
  3. Tobias Schulze
  4. Yvonne Neldner
  5. Anna Moroni
  6. Gerhard Thiel
  7. Timm Maier
  8. Stephan Schenck
(2020)
Structural basis for ion selectivity in TMEM175 K+ channels
eLife 9:e53683.
https://doi.org/10.7554/eLife.53683

Share this article

https://doi.org/10.7554/eLife.53683

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yamato Niitani, Kohei Matsuzaki ... Michio Tomishige
    Research Article

    The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head–head coordination; however, which kinetic step(s) in the chemomechanical cycle is ‘gated’ by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin’s motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.

    1. Structural Biology and Molecular Biophysics
    Christopher T Schafer, Raymond F Pauszek III ... David P Millar
    Research Article

    The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.