Structural basis for ion selectivity in TMEM175 K+ channels

  1. Janine D Brunner  Is a corresponding author
  2. Roman P Jakob
  3. Tobias Schulze
  4. Yvonne Neldner
  5. Anna Moroni
  6. Gerhard Thiel
  7. Timm Maier
  8. Stephan Schenck  Is a corresponding author
  1. VIB, Belgium
  2. University of Basel, Switzerland
  3. Technische Universität Darmstadt, Germany
  4. University Hospital Zürich, Switzerland
  5. University of Milan, Italy

Abstract

The TMEM175 family constitutes recently discovered K+ channels that are important for autophagosome turnover and lysosomal pH regulation and are associated with the early onset of Parkinson Disease. TMEM175 channels lack a P-loop selectivity filter, a hallmark of all known K+ channels, raising the question how selectivity is achieved. Here, we report the X-ray structure of a closed bacterial TMEM175 channel in complex with a nanobody fusion-protein disclosing bound K+ ions. Our analysis revealed that a highly conserved layer of threonine residues in the pore conveys a basal K+ selectivity. An additional layer comprising two serines in human TMEM175 increases selectivity further and renders this channel sensitive to 4-aminopyridine and Zn2+. Our findings suggest that large hydrophobic side chains occlude the pore, forming a physical gate, and that channel opening by iris-like motions simultaneously relocates the gate and exposes the otherwise concealed selectivity filter to the pore lumen.

Data availability

Atomic coordinates have been deposited at the Protein Data Bank with thefollowing unique identifiers: 6HD8, 6HD9, 6HDA, 6HDB, 6HDC, 6SWR.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Janine D Brunner

    VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
    For correspondence
    janine.brunner@vub.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4237-9322
  2. Roman P Jakob

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Tobias Schulze

    Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Yvonne Neldner

    Department of Trauma, University Hospital Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Moroni

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1860-406X
  6. Gerhard Thiel

    Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Timm Maier

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7459-1363
  8. Stephan Schenck

    VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
    For correspondence
    stephan.schenck@vub.be
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 European Research Council (Advanced Grant 495 (AdG) n. 695078 noMAGIC)

  • Anna Moroni
  • Gerhard Thiel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. László Csanády, Semmelweis University, Hungary

Version history

  1. Received: November 16, 2019
  2. Accepted: April 7, 2020
  3. Accepted Manuscript published: April 8, 2020 (version 1)
  4. Version of Record published: April 22, 2020 (version 2)
  5. Version of Record updated: April 24, 2020 (version 3)

Copyright

© 2020, Brunner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,033
    views
  • 1,518
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janine D Brunner
  2. Roman P Jakob
  3. Tobias Schulze
  4. Yvonne Neldner
  5. Anna Moroni
  6. Gerhard Thiel
  7. Timm Maier
  8. Stephan Schenck
(2020)
Structural basis for ion selectivity in TMEM175 K+ channels
eLife 9:e53683.
https://doi.org/10.7554/eLife.53683

Share this article

https://doi.org/10.7554/eLife.53683

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.