Abstract
Carbon catabolite repression 4 (CCR4) is a conserved mRNA deadenylase regulating posttranscriptional gene expression. However, regulation of CCR4 in virus infections is less understood. Here, we characterized a pro-viral role of CCR4 in replication of a plant cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV). The barley (Hordeum vulgare) CCR4 protein (HvCCR4) was identified to interact with the BYSMV phosphoprotein (P). The BYSMV P protein recruited HvCCR4 from processing bodies (PBs) into viroplasm-like bodies. Overexpression of HvCCR4 promoted BYSMV replication in plants. Conversely, knockdown of the small brown planthopper CCR4 inhibited viral accumulation in the insect vector. Biochemistry experiments revealed that HvCCR4 was recruited into N–RNA complexes by the BYSMV P protein and triggered turnover of N-bound cellular mRNAs, thereby releasing RNA-free N protein to bind viral genomic RNA for optimal viral replication. Our results demonstrate that the co-opted the CCR4-mediated RNA decay facilitates cytorhabdovirus replication in plants and insects.
Article and author information
Author details
Funding
National Natural Science Foundation of China (31872920 and 31571978)
- Xian-Bing Wang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Detlef Weigel, Max Planck Institute for Developmental Biology, Germany
Publication history
- Received: November 19, 2019
- Accepted: March 21, 2020
- Accepted Manuscript published: March 24, 2020 (version 1)
- Version of Record published: March 30, 2020 (version 2)
Copyright
© 2020, Zhang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,562
- Page views
-
- 398
- Downloads
-
- 1
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.