CCR4, a RNA decay factor, is hijacked by a plant cytorhabdovirus phosphoprotein to facilitate virus replication

  1. Zhen-Jia Zhang  Is a corresponding author
  2. Qiang Gao
  3. Xiao-Dong Fang
  4. Zhi-Hang Ding
  5. Dong-Min Gao
  6. Wen-Ya Xu
  7. Qing Cao
  8. Ji-Hui Qiao
  9. Yi-Zhou Yang
  10. Chenggui Han
  11. Ying Wang
  12. Xuefeng Yuan
  13. Dawei Li
  14. Xian-Bing Wang  Is a corresponding author
  1. China Agricultural University, China
  2. College of Plant Protection, Shandong Agricultural University, China

Abstract

Carbon catabolite repression 4 (CCR4) is a conserved mRNA deadenylase regulating posttranscriptional gene expression. However, regulation of CCR4 in virus infections is less understood. Here, we characterized a pro-viral role of CCR4 in replication of a plant cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV). The barley (Hordeum vulgare) CCR4 protein (HvCCR4) was identified to interact with the BYSMV phosphoprotein (P). The BYSMV P protein recruited HvCCR4 from processing bodies (PBs) into viroplasm-like bodies. Overexpression of HvCCR4 promoted BYSMV replication in plants. Conversely, knockdown of the small brown planthopper CCR4 inhibited viral accumulation in the insect vector. Biochemistry experiments revealed that HvCCR4 was recruited into N–RNA complexes by the BYSMV P protein and triggered turnover of N-bound cellular mRNAs, thereby releasing RNA-free N protein to bind viral genomic RNA for optimal viral replication. Our results demonstrate that the co-opted the CCR4-mediated RNA decay facilitates cytorhabdovirus replication in plants and insects.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Zhen-Jia Zhang

    College of Biological Sciences, China Agricultural University, Beijing, China
    For correspondence
    zjzhang@cau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiang Gao

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiao-Dong Fang

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhi-Hang Ding

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Dong-Min Gao

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wen-Ya Xu

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Qing Cao

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ji-Hui Qiao

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yi-Zhou Yang

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Chenggui Han

    State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Ying Wang

    College of Plant Protection, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Xuefeng Yuan

    Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Dawei Li

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Xian-Bing Wang

    College of Biological Sciences, China Agricultural University, Beijing, China
    For correspondence
    wangxianbing@cau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3082-2462

Funding

National Natural Science Foundation of China (31872920 and 31571978)

  • Xian-Bing Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Developmental Biology, Germany

Version history

  1. Received: November 19, 2019
  2. Accepted: March 21, 2020
  3. Accepted Manuscript published: March 24, 2020 (version 1)
  4. Version of Record published: March 30, 2020 (version 2)

Copyright

© 2020, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,236
    Page views
  • 497
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhen-Jia Zhang
  2. Qiang Gao
  3. Xiao-Dong Fang
  4. Zhi-Hang Ding
  5. Dong-Min Gao
  6. Wen-Ya Xu
  7. Qing Cao
  8. Ji-Hui Qiao
  9. Yi-Zhou Yang
  10. Chenggui Han
  11. Ying Wang
  12. Xuefeng Yuan
  13. Dawei Li
  14. Xian-Bing Wang
(2020)
CCR4, a RNA decay factor, is hijacked by a plant cytorhabdovirus phosphoprotein to facilitate virus replication
eLife 9:e53753.
https://doi.org/10.7554/eLife.53753

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Juan Xiang, Chaoyang Fan ... Pei Xu
    Research Article Updated

    The relative positions of viral DNA genomes to the host intranuclear environment play critical roles in determining virus fate. Recent advances in the application of chromosome conformation capture-based sequencing analysis (3 C technologies) have revealed valuable aspects of the spatiotemporal interplay of viral genomes with host chromosomes. However, to elucidate the causal relationship between the subnuclear localization of viral genomes and the pathogenic outcome of an infection, manipulative tools are needed. Rapid repositioning of viral DNAs to specific subnuclear compartments amid infection is a powerful approach to synchronize and interrogate this dynamically changing process in space and time. Herein, we report an inducible CRISPR-based two-component platform that relocates extrachromosomal DNA pieces (5 kb to 170 kb) to the nuclear periphery in minutes (CRISPR-nuPin). Based on this strategy, investigations of herpes simplex virus 1 (HSV-1), a prototypical member of the human herpesvirus family, revealed unprecedently reported insights into the early intranuclear life of the pathogen: (I) Viral genomes tethered to the nuclear periphery upon entry, compared with those freely infecting the nucleus, were wrapped around histones with increased suppressive modifications and subjected to stronger transcriptional silencing and prominent growth inhibition. (II) Relocating HSV-1 genomes at 1 hr post infection significantly promoted the transcription of viral genes, termed an ‘Escaping’ effect. (III) Early accumulation of ICP0 was a sufficient but not necessary condition for ‘Escaping’. (IV) Subnuclear localization was only critical during early infection. Importantly, the CRISPR-nuPin tactic, in principle, is applicable to many other DNA viruses.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Dasvit Shetty, Linda J Kenney
    Research Article Updated

    The transcriptional regulator SsrB acts as a switch between virulent and biofilm lifestyles of non-typhoidal Salmonella enterica serovar Typhimurium. During infection, phosphorylated SsrB activates genes on Salmonella Pathogenicity Island-2 (SPI-2) essential for survival and replication within the macrophage. Low pH inside the vacuole is a key inducer of expression and SsrB activation. Previous studies demonstrated an increase in SsrB protein levels and DNA-binding affinity at low pH; the molecular basis was unknown (Liew et al., 2019). This study elucidates its underlying mechanism and in vivo significance. Employing single-molecule and transcriptional assays, we report that the SsrB DNA-binding domain alone (SsrBc) is insufficient to induce acid pH-sensitivity. Instead, His12, a conserved residue in the receiver domain confers pH sensitivity to SsrB allosterically. Acid-dependent DNA binding was highly cooperative, suggesting a new configuration of SsrB oligomers at SPI-2-dependent promoters. His12 also plays a role in SsrB phosphorylation; substituting His12 reduced phosphorylation at neutral pH and abolished pH-dependent differences. Failure to flip the switch in SsrB renders Salmonella avirulent and represents a potential means of controlling virulence.