Comprehensive fitness maps of Hsp90 show widespread environmental dependence

  1. Julia M Flynn
  2. Ammeret Rossouw
  3. Pamela Cote-Hammarlof
  4. Inês Fragata
  5. David Mavor
  6. Carl Hollins
  7. Claudia Bank
  8. Daniel NA Bolon  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Instituto Gulbenkian de Ciência, Portugal

Abstract

Gene-environment interactions have long been theorized to influence molecular evolution. However, the environmental dependence of most mutations remains unknown. Using deep mutational scanning, we engineered yeast with all 44,604 single codon changes encoding 14,160 amino acid variants in Hsp90 and quantified growth effects under standard conditions and under five stress conditions. To our knowledge these are the largest determined comprehensive fitness maps of point mutants. The growth of many variants differed between conditions, indicating that environment can have a large impact on Hsp90 evolution. Multiple variants provided growth advantages under individual conditions, however these variants tended to exhibit growth defects in other environments. The diversity of Hsp90 sequences observed in extant eukaryotes preferentially contains variants that supported robust growth under all tested conditions. Rather than favoring substitutions in individual conditions, the long-term selective pressure on Hsp90 may have been that of fluctuating environments, leading to robustness under a variety of conditions.

Data availability

Next generation sequencing data has been deposited to the NCBI short read archive (Project # PRJNA593726). Tabulated raw counts of all variants in all conditions are included in the manuscript in Figure 1 - source data 1 and Figure 2 - source data 2. Source data files have been provided for Figure 1, 2, 3, 4, 5 and 6.

The following data sets were generated

Article and author information

Author details

  1. Julia M Flynn

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5490-393X
  2. Ammeret Rossouw

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pamela Cote-Hammarlof

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Inês Fragata

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6865-1510
  5. David Mavor

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carl Hollins

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0410-9639
  7. Claudia Bank

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4730-758X
  8. Daniel NA Bolon

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    Dan.Bolon@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5857-6676

Funding

National Institutes of Health (R01-GM112844)

  • Julia M Flynn
  • Ammeret Rossouw
  • Pamela Cote-Hammarlof
  • David Mavor
  • Carl Hollins
  • Daniel NA Bolon

National Institutes of Health (F32-GM119205)

  • Julia M Flynn

Fundação para a Ciência e a Tecnologia (JPIAMR/0001/2016)

  • Inês Fragata

EMBO Installation Grant (IG4152)

  • Claudia Bank

ERC Starting Grant (804569-FIT2GO)

  • Claudia Bank

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian R Landry, Université Laval, Canada

Version history

  1. Received: November 21, 2019
  2. Accepted: March 3, 2020
  3. Accepted Manuscript published: March 4, 2020 (version 1)
  4. Version of Record published: March 13, 2020 (version 2)

Copyright

© 2020, Flynn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,104
    views
  • 359
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia M Flynn
  2. Ammeret Rossouw
  3. Pamela Cote-Hammarlof
  4. Inês Fragata
  5. David Mavor
  6. Carl Hollins
  7. Claudia Bank
  8. Daniel NA Bolon
(2020)
Comprehensive fitness maps of Hsp90 show widespread environmental dependence
eLife 9:e53810.
https://doi.org/10.7554/eLife.53810

Share this article

https://doi.org/10.7554/eLife.53810

Further reading

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.