1. Developmental Biology
  2. Stem Cells and Regenerative Medicine
Download icon

R-spondin signalling is essential for the maintenance and differentiation of mouse nephron progenitors

Research Article
  • Cited 0
  • Views 886
  • Annotations
Cite this article as: eLife 2020;9:e53895 doi: 10.7554/eLife.53895

Abstract

During kidney development, WNT/b-catenin signalling has to be tightly controlled to ensure proliferation and differentiation of nephron progenitor cells. Here we show in mice that the signalling molecules RSPO1 and RSPO3 act in a functionally redundant manner to permit WNT/b-catenin signalling and their genetic deletion leads to a rapid decline of nephron progenitors. By contrast, tissue specific deletion in cap mesenchymal cells abolishes mesenchyme to epithelial transition (MET) that is linked to a loss of Bmp7 expression, absence of SMAD1/5 phosphorylation and a concomitant failure to activate Lef1, Fgf8 and Wnt4, thus explaining the observed phenotype on a molecular level. Surprisingly, the full knockout of LGR4/5/6, the cognate receptors of R-spondins, only mildly affects progenitor numbers, but does not interfere with MET. Taken together our data demonstrate key roles for R-spondins in permitting stem cell maintenance and differentiation and reveal Lgr-dependent and independent functions for these ligands during kidney formation.

Article and author information

Author details

  1. Valerie PI Vidal

    Institute of Biology Valrose, Inserm U1091, University of Nice, Nice, France
    For correspondence
    valerie.vidal@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Fariba Jian Motamedi

    Institute of Biology Valrose, Inserm U1091, University of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Samah Rekima

    Institute of Biology Valrose, Inserm U1091, University of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Elodie P Gregoire

    iBV, CNRS, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Emmanuelle Szenker-Ravi

    Institute of Medical Biology, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Marc Leushacke

    Institute of Medical Biology, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Bruno Reversade

    Institute of Medical Biology, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4070-7997
  8. Marie-Christine Chaboissier

    iBV, CNRS, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0934-8217
  9. Andreas Schedl

    Institute of Biology Valrose, Inserm U1091, University of Nice, Nice, France
    For correspondence
    schedl@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9380-7396

Funding

European Commission (305608)

  • Andreas Schedl

Ligue Contre le Cancer (Equipe labelisee)

  • Andreas Schedl

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experiments described in this paper were carried out in compliance with the French and international animal welfare laws, guidelines and policies and were approved by the local ethics committee (PEA No NCE-2014-207 and PEA No: 2018060516474844 (V2)).

Reviewing Editor

  1. Roel Nusse, Stanford University, United States

Publication history

  1. Received: November 23, 2019
  2. Accepted: April 23, 2020
  3. Accepted Manuscript published: April 23, 2020 (version 1)
  4. Accepted Manuscript updated: May 1, 2020 (version 2)
  5. Version of Record published: May 15, 2020 (version 3)

Copyright

© 2020, Vidal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 886
    Page views
  • 152
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Christian SM Helker et al.
    Research Article

    To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms that govern these processes are incompletely understood. Here, we show that Apelin signaling functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting transcription factor c-Myc. Moreover, Apelin expression is regulated by Notch signaling, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown embryos. These data provide new insights into fundamental principles of blood vessel formation and Apelin signaling, enabling a better understanding of vascular growth in health and disease.

    1. Developmental Biology
    Néstor Saiz et al.
    Research Article Updated

    Precise control and maintenance of population size is fundamental for organismal development and homeostasis. The three cell types of the mammalian blastocyst are generated in precise proportions over a short time, suggesting a mechanism to ensure a reproducible outcome. We developed a minimal mathematical model demonstrating growth factor signaling is sufficient to guarantee this robustness and which anticipates an embryo's response to perturbations in lineage composition. Addition of lineage-restricted cells both in vivo and in silico, causes a shift of the fate of progenitors away from the supernumerary cell type, while eliminating cells using laser ablation biases the specification of progenitors toward the targeted cell type. Finally, FGF4 couples fate decisions to lineage composition through changes in local growth factor concentration, providing a basis for the regulative abilities of the early mammalian embryo whereby fate decisions are coordinated at the population level to robustly generate tissues in the right proportions.