Abstract

During kidney development, WNT/b-catenin signalling has to be tightly controlled to ensure proliferation and differentiation of nephron progenitor cells. Here we show in mice that the signalling molecules RSPO1 and RSPO3 act in a functionally redundant manner to permit WNT/b-catenin signalling and their genetic deletion leads to a rapid decline of nephron progenitors. By contrast, tissue specific deletion in cap mesenchymal cells abolishes mesenchyme to epithelial transition (MET) that is linked to a loss of Bmp7 expression, absence of SMAD1/5 phosphorylation and a concomitant failure to activate Lef1, Fgf8 and Wnt4, thus explaining the observed phenotype on a molecular level. Surprisingly, the full knockout of LGR4/5/6, the cognate receptors of R-spondins, only mildly affects progenitor numbers, but does not interfere with MET. Taken together our data demonstrate key roles for R-spondins in permitting stem cell maintenance and differentiation and reveal Lgr-dependent and independent functions for these ligands during kidney formation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.Source data files have been provided for Figures 2B, 2C, 2F, 3C, 3D, 4E, 5D, 5F 6C, Suppl. Figure 1A

Article and author information

Author details

  1. Valerie PI Vidal

    Institute of Biology Valrose, Inserm U1091, University of Nice, Nice, France
    For correspondence
    valerie.vidal@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Fariba Jian Motamedi

    Institute of Biology Valrose, Inserm U1091, University of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Samah Rekima

    Institute of Biology Valrose, Inserm U1091, University of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Elodie P Gregoire

    iBV, CNRS, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Emmanuelle Szenker-Ravi

    Institute of Medical Biology, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Marc Leushacke

    Institute of Medical Biology, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Bruno Reversade

    Institute of Medical Biology, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4070-7997
  8. Marie-Christine Chaboissier

    iBV, CNRS, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0934-8217
  9. Andreas Schedl

    Institute of Biology Valrose, Inserm U1091, University of Nice, Nice, France
    For correspondence
    schedl@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9380-7396

Funding

European Commission (305608)

  • Andreas Schedl

Ligue Contre le Cancer (Equipe labelisee)

  • Andreas Schedl

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experiments described in this paper were carried out in compliance with the French and international animal welfare laws, guidelines and policies and were approved by the local ethics committee (PEA No NCE-2014-207 and PEA No: 2018060516474844 (V2)).

Copyright

© 2020, Vidal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,629
    views
  • 348
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valerie PI Vidal
  2. Fariba Jian Motamedi
  3. Samah Rekima
  4. Elodie P Gregoire
  5. Emmanuelle Szenker-Ravi
  6. Marc Leushacke
  7. Bruno Reversade
  8. Marie-Christine Chaboissier
  9. Andreas Schedl
(2020)
R-spondin signalling is essential for the maintenance and differentiation of mouse nephron progenitors
eLife 9:e53895.
https://doi.org/10.7554/eLife.53895

Share this article

https://doi.org/10.7554/eLife.53895

Further reading

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.

    1. Developmental Biology
    Dena Goldblatt, Basak Rosti ... David Schoppik
    Research Article

    Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of principles of neural development.