Abstract

During kidney development, WNT/b-catenin signalling has to be tightly controlled to ensure proliferation and differentiation of nephron progenitor cells. Here we show in mice that the signalling molecules RSPO1 and RSPO3 act in a functionally redundant manner to permit WNT/b-catenin signalling and their genetic deletion leads to a rapid decline of nephron progenitors. By contrast, tissue specific deletion in cap mesenchymal cells abolishes mesenchyme to epithelial transition (MET) that is linked to a loss of Bmp7 expression, absence of SMAD1/5 phosphorylation and a concomitant failure to activate Lef1, Fgf8 and Wnt4, thus explaining the observed phenotype on a molecular level. Surprisingly, the full knockout of LGR4/5/6, the cognate receptors of R-spondins, only mildly affects progenitor numbers, but does not interfere with MET. Taken together our data demonstrate key roles for R-spondins in permitting stem cell maintenance and differentiation and reveal Lgr-dependent and independent functions for these ligands during kidney formation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.Source data files have been provided for Figures 2B, 2C, 2F, 3C, 3D, 4E, 5D, 5F 6C, Suppl. Figure 1A

Article and author information

Author details

  1. Valerie PI Vidal

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    For correspondence
    valerie.vidal@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Fariba Jian Motamedi

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Samah Rekima

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Elodie P Gregoire

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Emmanuelle Szenker-Ravi

    Institute of Medical Biology, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Marc Leushacke

    Institute of Medical Biology, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Bruno Reversade

    Institute of Medical Biology, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4070-7997
  8. Marie-Christine Chaboissier

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0934-8217
  9. Andreas Schedl

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    For correspondence
    schedl@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9380-7396

Funding

European Commission (305608)

  • Andreas Schedl

Ligue Contre le Cancer (Equipe labelisee)

  • Andreas Schedl

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Roel Nusse, Stanford University, United States

Ethics

Animal experimentation: The experiments described in this paper were carried out in compliance with the French and international animal welfare laws, guidelines and policies and were approved by the local ethics committee (PEA No NCE-2014-207 and PEA No: 2018060516474844 (V2)).

Version history

  1. Received: November 23, 2019
  2. Accepted: April 23, 2020
  3. Accepted Manuscript published: April 23, 2020 (version 1)
  4. Accepted Manuscript updated: May 1, 2020 (version 2)
  5. Version of Record published: May 15, 2020 (version 3)

Copyright

© 2020, Vidal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,539
    Page views
  • 337
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valerie PI Vidal
  2. Fariba Jian Motamedi
  3. Samah Rekima
  4. Elodie P Gregoire
  5. Emmanuelle Szenker-Ravi
  6. Marc Leushacke
  7. Bruno Reversade
  8. Marie-Christine Chaboissier
  9. Andreas Schedl
(2020)
R-spondin signalling is essential for the maintenance and differentiation of mouse nephron progenitors
eLife 9:e53895.
https://doi.org/10.7554/eLife.53895

Share this article

https://doi.org/10.7554/eLife.53895

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.