Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers

  1. Byoungsan Choi
  2. Minkwon Cha
  3. Gee Sung Eun
  4. Dae Hee Lee
  5. Seul Lee
  6. Muhammad Ehsan
  7. Pil Seok Chae
  8. Won Do Heo
  9. YongKeun Park
  10. Tae-Young Yoon  Is a corresponding author
  1. Proteina Co Ltd, Republic of Korea
  2. Korea Advanced Institute of Science and Technology, Republic of Korea
  3. Seoul National University, Republic of Korea
  4. Hanyang University, Republic of Korea

Abstract

Human epidermal growth factor receptors (HERs) are the primary targets of many directed cancer therapies. However, the reason a specific dimer of HERs generates a stronger proliferative signal than other permutations remains unclear. Here, we used single-molecule immunoprecipitation to develop a biochemical assay for endogenously-formed, entire HER2-HER3 heterodimers. We observed unexpected, large conformational fluctuations in juxta-membrane and kinase domains of the HER2-HER3 heterodimer. Nevertheless, the individual HER2-HER3 heterodimers catalyze tyrosine phosphorylation at an unusually high rate, while simultaneously interacting with multiple copies of downstream signaling effectors. Our results suggest that the high catalytic rate and multi-tasking capability make a concerted contribution to the strong signaling potency of the HER2-HER3 heterodimers.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Byoungsan Choi

    Proteina R&D center, Proteina Co Ltd, Seoul, Republic of Korea
    Competing interests
    Byoungsan Choi, B.C. and T.-Y.Y. filed a patent on these findings (10-2018-0125506). T.-Y.Y. is co-founder of Proteina. B.C. is now a senior scientist at Proteina..
  2. Minkwon Cha

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  3. Gee Sung Eun

    School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  4. Dae Hee Lee

    Proteina R&D center, Proteina Co Ltd, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  5. Seul Lee

    Proteina R&D center, Proteina Co Ltd, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  6. Muhammad Ehsan

    Department of Bionanotechnology, Hanyang University, Ansan, Republic of Korea
    Competing interests
    No competing interests declared.
  7. Pil Seok Chae

    Department of Bionanotechnology, Hanyang University, Ansan, Republic of Korea
    Competing interests
    No competing interests declared.
  8. Won Do Heo

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  9. YongKeun Park

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0528-6661
  10. Tae-Young Yoon

    School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
    For correspondence
    tyyoon@snu.ac.kr
    Competing interests
    Tae-Young Yoon, B.C. and T.-Y.Y. filed a patent on these findings (10-2018-0125506). T.-Y.Y. is co-founder of Proteina. B.C. is now a senior scientist at Proteina..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5184-7725

Funding

National Research Foundation of Korea (NRF-2011-0018352)

  • Tae-Young Yoon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,315
    views
  • 561
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Byoungsan Choi
  2. Minkwon Cha
  3. Gee Sung Eun
  4. Dae Hee Lee
  5. Seul Lee
  6. Muhammad Ehsan
  7. Pil Seok Chae
  8. Won Do Heo
  9. YongKeun Park
  10. Tae-Young Yoon
(2020)
Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers
eLife 9:e53934.
https://doi.org/10.7554/eLife.53934

Share this article

https://doi.org/10.7554/eLife.53934

Further reading

    1. Biochemistry and Chemical Biology
    2. Physics of Living Systems
    Debabrata Dey, Shir Marciano ... Gideon Schreiber
    Research Article

    For drugs to be active they have to reach their targets. Within cells this requires crossing the cell membrane, and then free diffusion, distribution, and availability. Here, we explored the in-cell diffusion rates and distribution of a series of small molecular fluorescent drugs, in comparison to proteins, by microscopy and fluorescence recovery after photobleaching (FRAP). While all proteins diffused freely, we found a strong correlation between pKa and the intracellular diffusion and distribution of small molecule drugs. Weakly basic, small-molecule drugs displayed lower fractional recovery after photobleaching and 10- to-20-fold slower diffusion rates in cells than in aqueous solutions. As, more than half of pharmaceutical drugs are weakly basic, they, are protonated in the cell cytoplasm. Protonation, facilitates the formation of membrane impermeable ionic form of the weak base small molecules. This results in ion trapping, further reducing diffusion rates of weakly basic small molecule drugs under macromolecular crowding conditions where other nonspecific interactions become more relevant and dominant. Our imaging studies showed that acidic organelles, particularly the lysosome, captured these molecules. Surprisingly, blocking lysosomal import only slightly increased diffusion rates and fractional recovery. Conversely, blocking protonation by N-acetylated analogues, greatly enhanced their diffusion and fractional recovery after FRAP. Based on these results, N-acetylation of small molecule drugs may improve the intracellular availability and distribution of weakly basic, small molecule drugs within cells.

    1. Biochemistry and Chemical Biology
    Zhe Zhang, Xu Hong ... Jian Zhan
    Research Article

    Despite their importance in a wide range of living organisms, self-cleaving ribozymes in the human genome are few and poorly studied. Here, we performed deep mutational scanning and covariance analysis of two previously proposed self-cleaving ribozymes (LINE-1 and OR4K15). We found that the regions essential for ribozyme activities are made of two short segments, with a total of 35 and 31 nucleotides only. The discovery makes them the simplest known self-cleaving ribozymes. Moreover, the essential regions are circular permutated with two nearly identical catalytic internal loops, supported by two stems of different lengths. These two self-cleaving ribozymes, which are shaped like lanterns, are similar to the catalytic regions of the twister sister ribozymes in terms of sequence and secondary structure. However, the nucleotides at the cleavage site have shown that mutational effects on two twister sister-like (TS-like) ribozymes are different from the twister sister ribozyme. The discovery of TS-like ribozymes reveals a ribozyme class with the simplest and, perhaps, the most primitive structure needed for self-cleavage.