Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers

  1. Byoungsan Choi
  2. Minkwon Cha
  3. Gee Sung Eun
  4. Dae Hee Lee
  5. Seul Lee
  6. Muhammad Ehsan
  7. Pil Seok Chae
  8. Won Do Heo
  9. YongKeun Park
  10. Tae-Young Yoon  Is a corresponding author
  1. Proteina Co Ltd, Republic of Korea
  2. Korea Advanced Institute of Science and Technology, Republic of Korea
  3. Seoul National University, Republic of Korea
  4. Hanyang University, Republic of Korea

Abstract

Human epidermal growth factor receptors (HERs) are the primary targets of many directed cancer therapies. However, the reason a specific dimer of HERs generates a stronger proliferative signal than other permutations remains unclear. Here, we used single-molecule immunoprecipitation to develop a biochemical assay for endogenously-formed, entire HER2-HER3 heterodimers. We observed unexpected, large conformational fluctuations in juxta-membrane and kinase domains of the HER2-HER3 heterodimer. Nevertheless, the individual HER2-HER3 heterodimers catalyze tyrosine phosphorylation at an unusually high rate, while simultaneously interacting with multiple copies of downstream signaling effectors. Our results suggest that the high catalytic rate and multi-tasking capability make a concerted contribution to the strong signaling potency of the HER2-HER3 heterodimers.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Byoungsan Choi

    Proteina R&D center, Proteina Co Ltd, Seoul, Republic of Korea
    Competing interests
    Byoungsan Choi, B.C. and T.-Y.Y. filed a patent on these findings (10-2018-0125506). T.-Y.Y. is co-founder of Proteina. B.C. is now a senior scientist at Proteina..
  2. Minkwon Cha

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  3. Gee Sung Eun

    School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  4. Dae Hee Lee

    Proteina R&D center, Proteina Co Ltd, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  5. Seul Lee

    Proteina R&D center, Proteina Co Ltd, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  6. Muhammad Ehsan

    Department of Bionanotechnology, Hanyang University, Ansan, Republic of Korea
    Competing interests
    No competing interests declared.
  7. Pil Seok Chae

    Department of Bionanotechnology, Hanyang University, Ansan, Republic of Korea
    Competing interests
    No competing interests declared.
  8. Won Do Heo

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  9. YongKeun Park

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0528-6661
  10. Tae-Young Yoon

    School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
    For correspondence
    tyyoon@snu.ac.kr
    Competing interests
    Tae-Young Yoon, B.C. and T.-Y.Y. filed a patent on these findings (10-2018-0125506). T.-Y.Y. is co-founder of Proteina. B.C. is now a senior scientist at Proteina..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5184-7725

Funding

National Research Foundation of Korea (NRF-2011-0018352)

  • Tae-Young Yoon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yibing Shan, DE Shaw Research, United States

Version history

  1. Received: November 25, 2019
  2. Accepted: April 7, 2020
  3. Accepted Manuscript published: April 8, 2020 (version 1)
  4. Version of Record published: April 22, 2020 (version 2)
  5. Version of Record updated: July 7, 2020 (version 3)

Copyright

© 2020, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,199
    views
  • 547
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Byoungsan Choi
  2. Minkwon Cha
  3. Gee Sung Eun
  4. Dae Hee Lee
  5. Seul Lee
  6. Muhammad Ehsan
  7. Pil Seok Chae
  8. Won Do Heo
  9. YongKeun Park
  10. Tae-Young Yoon
(2020)
Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers
eLife 9:e53934.
https://doi.org/10.7554/eLife.53934

Share this article

https://doi.org/10.7554/eLife.53934

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.