Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers

  1. Byoungsan Choi
  2. Minkwon Cha
  3. Gee Sung Eun
  4. Dae Hee Lee
  5. Seul Lee
  6. Muhammad Ehsan
  7. Pil Seok Chae
  8. Won Do Heo
  9. YongKeun Park
  10. Tae-Young Yoon  Is a corresponding author
  1. Proteina Co Ltd, Republic of Korea
  2. Korea Advanced Institute of Science and Technology, Republic of Korea
  3. Seoul National University, Republic of Korea
  4. Hanyang University, Republic of Korea

Abstract

Human epidermal growth factor receptors (HERs) are the primary targets of many directed cancer therapies. However, the reason a specific dimer of HERs generates a stronger proliferative signal than other permutations remains unclear. Here, we used single-molecule immunoprecipitation to develop a biochemical assay for endogenously-formed, entire HER2-HER3 heterodimers. We observed unexpected, large conformational fluctuations in juxta-membrane and kinase domains of the HER2-HER3 heterodimer. Nevertheless, the individual HER2-HER3 heterodimers catalyze tyrosine phosphorylation at an unusually high rate, while simultaneously interacting with multiple copies of downstream signaling effectors. Our results suggest that the high catalytic rate and multi-tasking capability make a concerted contribution to the strong signaling potency of the HER2-HER3 heterodimers.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Byoungsan Choi

    Proteina R&D center, Proteina Co Ltd, Seoul, Republic of Korea
    Competing interests
    Byoungsan Choi, B.C. and T.-Y.Y. filed a patent on these findings (10-2018-0125506). T.-Y.Y. is co-founder of Proteina. B.C. is now a senior scientist at Proteina..
  2. Minkwon Cha

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  3. Gee Sung Eun

    School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  4. Dae Hee Lee

    Proteina R&D center, Proteina Co Ltd, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  5. Seul Lee

    Proteina R&D center, Proteina Co Ltd, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  6. Muhammad Ehsan

    Department of Bionanotechnology, Hanyang University, Ansan, Republic of Korea
    Competing interests
    No competing interests declared.
  7. Pil Seok Chae

    Department of Bionanotechnology, Hanyang University, Ansan, Republic of Korea
    Competing interests
    No competing interests declared.
  8. Won Do Heo

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
  9. YongKeun Park

    Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0528-6661
  10. Tae-Young Yoon

    School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
    For correspondence
    tyyoon@snu.ac.kr
    Competing interests
    Tae-Young Yoon, B.C. and T.-Y.Y. filed a patent on these findings (10-2018-0125506). T.-Y.Y. is co-founder of Proteina. B.C. is now a senior scientist at Proteina..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5184-7725

Funding

National Research Foundation of Korea (NRF-2011-0018352)

  • Tae-Young Yoon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,243
    views
  • 550
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Byoungsan Choi
  2. Minkwon Cha
  3. Gee Sung Eun
  4. Dae Hee Lee
  5. Seul Lee
  6. Muhammad Ehsan
  7. Pil Seok Chae
  8. Won Do Heo
  9. YongKeun Park
  10. Tae-Young Yoon
(2020)
Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers
eLife 9:e53934.
https://doi.org/10.7554/eLife.53934

Share this article

https://doi.org/10.7554/eLife.53934

Further reading

    1. Biochemistry and Chemical Biology
    Luca Unione, Jesús Jiménez-Barbero
    Insight

    Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.