Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis
Abstract
Fatty acid β-oxidation (FAO) is the main bioenergetic pathway in human prostate cancer (PCa) and a promising novel therapeutic vulnerability. Here we demonstrate therapeutic efficacy of targeting FAO in clinical prostate tumors cultured ex vivo, and identify DECR1, encoding the rate-limiting enzyme for oxidation of polyunsaturated fatty acids (PUFAs), as robustly overexpressed in PCa tissues and associated with shorter relapse-free survival. DECR1 is a negatively-regulated androgen receptor (AR) target gene and, therefore, may promote PCa cell survival and resistance to AR targeting therapeutics. DECR1 knockdown selectively inhibited β-oxidation of PUFAs, inhibited proliferation and migration of PCa cells, including treatment resistant lines, and suppressed tumor cell proliferation and metastasis in mouse xenograft models. Mechanistically, targeting of DECR1 caused cellular accumulation of PUFAs, enhanced mitochondrial oxidative stress and lipid peroxidation, and induced ferroptosis. These findings implicate PUFA oxidation via DECR1 as an unexplored facet of FAO that promotes survival of PCa cells.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
-
Age-Related Gene Expression Changes in Prostate Cancer PatientsNCBI The Gene Expression Omnibus, GSE89194.
-
The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD)National Cancer Institute, TCGA-PRAD.
-
Integrative Molecular Concepts Modeling of Prostate Cancer ProgressionNCBI The Gene Expression Omnibus, GSE6099.
-
The Mutational Landscape of Lethal Castrate Resistant Prostate CancerNCBI The Gene Expression Omnibus, GSE35988.
-
Integrative genomic profiling of human prostate cancerNCBI The Gene Expression Omnibus, GSE21032.
-
Molecular Sampling of Prostate Cancer: a dilemma for predicting disease progressionNCBI The Gene Expression Omnibus, GSE16560.
-
A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growthNCBI The Gene Expression Omnibus, GSE7868.
-
Identification of an SRF- and androgen-dependent gene signature in prostate cancerNCBI The Gene Expression Omnibus, GSE22606.
-
Therapeutic Targeting of BET Bromodomain Proteins in Castration-Resistant Prostate CancerNCBI The Gene Expression Omnibus, GSE55064.
-
Genome-wide analysis of enzalutamide- and/or olaparib-responsive gene expression in prostate cancer cellsNCBI The Gene Expression Omnibus, GSE69249.
-
Expression profiling of the mouse prostate after castration and hormone replacementNCBI The Gene Expression Omnibus, GSE5901.
-
Glucocorticoid Receptor Confers Resistance to Anti-Androgens by Bypassing Androgen Receptor BlockadeNCBI The Gene Expression Omnibus, GSE52169.
-
Androgen receptor programming in human tissue implicates HOXB13 in prostate pathogenesis [ChIP-Seq]NCBI The Gene Expression Omnibus, GSE56288.
Article and author information
Author details
Funding
National Health and Medical Research Council (Early Career Fellowship,1138648)
- Zeyad D Nassar
KU Leuven (Project Grants C16/15/073 and C32/17/052)
- Johannes V Swinnen
Australian Research Council (Future Fellowship,FT130101004)
- Lisa M Butler
Cancer Council South Australia (Beat Cancer Fellowship,PRF1117)
- Lisa M Butler
Movember Foundation (Revolutionary Team Award,MRTA3)
- Lisa M Butler
National Health and Medical Research Council (Project Grant,1121057)
- Luke A Selth
National Health and Medical Research Council (Project Grant,1100626)
- Anthony S Don
National Health and Medical Research Council (Fellowship,1084178)
- Andrew M Scott
Prostate Cancer Foundation of Australia (Young Investigator Award,YI 1417)
- Zeyad D Nassar
Cure Cancer Australia Foundation (Project Grant,1164798)
- Zeyad D Nassar
EMBL Australia (Group Leader Award)
- David J Lynn
University of Sydney (Robinson Fellowship)
- Andrew J Hoy
Fonds Wetenschappelijk Onderzoek (Project Grants G.0841.15 and G.0C22.19N)
- Johannes V Swinnen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animal studies were approved by the Austin Health Animal Ethics Committee (approval number A2015/05311), Heidelberg, Australia, and the University of Adelaide Animal Ethics Committee (approval number M-2019-037), and were carried out in accordance with the recommendations of the National Health and Medical Research Council of Australia.
Human subjects: Fresh and archival prostate tissue specimens were collected from men undergoing robotic radical prostatectomy at St. Andrew's Hospital (Adelaide, South Australia) with written informed consent through the Australian Prostate Cancer BioResource. Ethical Approval was provided by the Human Research Ethics Committees of the University of Adelaide (H-2012-016) and St Andrew's Hospital.
Copyright
© 2020, Nassar et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,870
- views
-
- 726
- downloads
-
- 140
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.
-
- Cancer Biology
- Immunology and Inflammation
In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.