Abstract

It has been suggested that Staufen (Stau) is key in controlling the variability of the posterior boundary of the Hb anterior domain (xHb). However, its underlying mechanism is elusive. Here, we quantified the dynamic 3D expression of segmentation genes in Drosophila embryos. With improved control of measurement errors, we show xHb of stau- mutants reproducibly moves posteriorly by 10% of the embryo length (EL) to the wild type (WT) position in the nuclear cycle (nc) 14, and its variability at short time windows is comparable as that of the WT. Moreover, for stau- mutants, the upstream Bicoid (Bcd) gradients show equivalent relative intensity noise to that of the WT in nc12-nc14, and the downstream Even-skipped (Eve) and cephalic furrow (CF) show the same positional errors as the WT. Our results indicate that threshold-dependent activation and self-organized filtering are not mutually exclusive but could both be implemented in early Drosophila embryogenesis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Zhe Yang

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Hongcun Zhu

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Kakit Kong

    School of Physics, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaoxuan Wu

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiayi Chen

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Peiyao Li

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jialong Jiang

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jinchao Zhao

    School of Physics, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Bofei Cui

    State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Feng Liu

    School of Physics, Peking University, Beijing, China
    For correspondence
    liufeng-phy@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9724-6127

Funding

National Natural Science Foundation of China (The General Program 31670852)

  • Feng Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sandeep Krishna, National Centre for Biological Sciences­‐Tata Institute of Fundamental Research, India

Version history

  1. Received: December 9, 2019
  2. Accepted: June 6, 2020
  3. Accepted Manuscript published: June 8, 2020 (version 1)
  4. Version of Record published: July 2, 2020 (version 2)

Copyright

© 2020, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,304
    views
  • 172
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhe Yang
  2. Hongcun Zhu
  3. Kakit Kong
  4. Xiaoxuan Wu
  5. Jiayi Chen
  6. Peiyao Li
  7. Jialong Jiang
  8. Jinchao Zhao
  9. Bofei Cui
  10. Feng Liu
(2020)
The dynamic transmission of positional information in stau-mutants during Drosophila embryogenesis
eLife 9:e54276.
https://doi.org/10.7554/eLife.54276

Share this article

https://doi.org/10.7554/eLife.54276

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.