1. Developmental Biology
  2. Neuroscience
Download icon

TorsinB overexpression prevents abnormal twisting in DYT1 dystonia mouse models

  1. Jay Li
  2. Chun-Chi Liang
  3. Samuel S Pappas  Is a corresponding author
  4. William T Dauer  Is a corresponding author
  1. University of Michigan, United States
  2. University of Texas Southwestern, United States
Research Article
  • Cited 1
  • Views 888
  • Annotations
Cite this article as: eLife 2020;9:e54285 doi: 10.7554/eLife.54285

Abstract

Genetic redundancy can be exploited to identify therapeutic targets for inherited disorders. We explored this possibility in DYT1 dystonia, a neurodevelopmental movement disorder caused by a loss-of-function (LOF) mutation in the TOR1A gene encoding torsinA. Prior work demonstrates that torsinA and its paralog torsinB have conserved functions at the nuclear envelope. This work established that low neuronal levels of torsinB dictate the neuronal selective phenotype of nuclear membrane budding. Here, we examined whether torsinB expression levels impact the onset or severity of abnormal movements or neuropathological features in DYT1 mouse models. We demonstrate that torsinB levels bidirectionally regulate these phenotypes. Reducing torsinB levels causes a dose-dependent worsening whereas torsinB overexpression rescues torsinA LOF-mediated abnormal movements and neurodegeneration. These findings identify torsinB as a potent modifier of torsinA LOF phenotypes and suggest that augmentation of torsinB expression may retard or prevent symptom development in DYT1 dystonia.

Article and author information

Author details

  1. Jay Li

    Department of Neurology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8146-4450
  2. Chun-Chi Liang

    Neurology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8345-8564
  3. Samuel S Pappas

    Peter O'Donnell Jr Brain Institute, University of Texas Southwestern, Dallas, United States
    For correspondence
    samuel.pappas@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6980-2058
  4. William T Dauer

    Peter O'Donnell Jr Brain Institute, University of Texas Southwestern, Dallas, United States
    For correspondence
    william.dauer@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1775-7504

Funding

Bachmann-Strauss Dystonia and Parkinson Foundation

  • William T Dauer

National Institutes of Health (R01 NS077730)

  • William T Dauer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures complied with national ethical guidelines regarding the use of rodents in scientific research and were approved by the University of Michigan (Protocol #00006600 and Protocol #00008870) and University of Texas Southwestern (Protocol #102767) Institutional Animal Care and Use Committees. Every effort was made to minimize both number of mice utilized as well as suffering.

Reviewing Editor

  1. Harry T Orr, University of Minnesota, United States

Publication history

  1. Received: December 9, 2019
  2. Accepted: March 23, 2020
  3. Accepted Manuscript published: March 23, 2020 (version 1)
  4. Version of Record published: April 8, 2020 (version 2)

Copyright

© 2020, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 888
    Page views
  • 95
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Junjun Jing et al.
    Research Article

    Interaction between adult stem cells and their progeny is critical for tissue homeostasis and regeneration. In multiple organs, mesenchymal stem cells (MSCs) give rise to transit amplifying cells (TACs), which then differentiate into different cell types. However, whether and how MSCs interact with TACs remains unknown. Using the adult mouse incisor as a model, we present in vivo evidence that TACs and MSCs have distinct genetic programs and engage in reciprocal signaling cross talk to maintain tissue homeostasis. Specifically, an IGF-WNT signaling cascade is involved in the feedforward from MSCs to TACs. TACs are regulated by tissue-autonomous canonical WNT signaling and can feedback to MSCs and regulate MSC maintenance via Wnt5a/Ror2-mediated non-canonical WNT signaling. Collectively, these findings highlight the importance of coordinated bidirectional signaling interaction between MSCs and TACs in instructing mesenchymal tissue homeostasis, and the mechanisms identified here have important implications for MSC–TAC interaction in other organs.

    1. Developmental Biology
    2. Neuroscience
    Maria Schörnig et al.
    Research Article

    We generated induced excitatory neurons (iNeurons, iNs) from chimpanzee, bonobo and human stem cells by expressing the transcription factor neurogenin‑2 (NGN2). Single cell RNA sequencing (scRNAseq) showed that genes involved in dendrite and synapse development are expressed earlier during iNs maturation in the chimpanzee and bonobo than the human cells. In accordance, during the first two weeks of differentiation, chimpanzee and bonobo iNs showed repetitive action potentials and more spontaneous excitatory activity than human iNs, and extended neurites of higher total length. However, the axons of human iNs were slightly longer at 5 weeks of differentiation. The timing of the establishment of neuronal polarity did not differ between the species. Chimpanzee, bonobo and human neurites eventually reached the same level of structural complexity. Thus, human iNs develop slower than chimpanzee and bonobo iNs and this difference in timing likely depends on functions downstream of NGN2.