Rapamycin rejuvenates oral health in aging mice

  1. Jonathan Y An
  2. Kristopher A Kerns
  3. Andrew Ouellette
  4. Laura Robinson
  5. H Douglas Morris
  6. Catherine Kaczorowski
  7. So-Il Park
  8. Title Mekvanich
  9. Alex Kang
  10. Jeffrey S McLean
  11. Timothy C Cox
  12. Matt Kaeberlein  Is a corresponding author
  1. University of Washington, United States
  2. The Jackson Laboratory, United States
  3. University of Missouri-Kansas City, United States

Abstract

Periodontal disease is an age-associated disorder clinically defined by periodontal bone loss, inflammation of the specialized tissues that surround and support the tooth, and microbiome dysbiosis. Currently, there is no therapy for reversing periodontal disease, and treatment is generally restricted to preventive measures or tooth extraction. The FDA-approved drug rapamycin slows aging and extends lifespan in multiple organisms, including mice. Here we demonstrate that short-term treatment with rapamycin rejuvenates the aged oral cavity of elderly mice, including regeneration of periodontal bone, attenuation of gingival and periodontal bone inflammation, and revertive shift of the oral microbiome toward a more youthful composition. This provides a geroscience strategy to potentially rejuvenate oral health and reverse periodontal disease in the elderly.

Data availability

The V4-16S rDNA sequences in raw format, prior to post-processing and data analysis, have been deposited at the European Nucleotide Archive (ENA) under study accession no. PRJEB35672.Dryad Data link: http://dx.doi.org/10.5061/dryad.f4qrfj6sn

The following data sets were generated

Article and author information

Author details

  1. Jonathan Y An

    Oral Health Sciences and Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8422-8608
  2. Kristopher A Kerns

    University of Washington, Washington, United States
    Competing interests
    No competing interests declared.
  3. Andrew Ouellette

    The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    No competing interests declared.
  4. Laura Robinson

    The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    No competing interests declared.
  5. H Douglas Morris

    The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7942-3748
  6. Catherine Kaczorowski

    The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    No competing interests declared.
  7. So-Il Park

    Oral Health Sciences and Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  8. Title Mekvanich

    Oral Health Sciences and Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  9. Alex Kang

    Oral Health Sciences and Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  10. Jeffrey S McLean

    Department of Periodontics and Oral Health Sciences Adjunct Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9934-5137
  11. Timothy C Cox

    University of Missouri-Kansas City, Kansas City, United States
    Competing interests
    No competing interests declared.
  12. Matt Kaeberlein

    Department of Pathology, University of Washington, Seattle, United States
    For correspondence
    kaeber@uw.edu
    Competing interests
    Matt Kaeberlein, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-3421

Funding

National Institute of Dental and Craniofacial Research (DE027254,DE023810,DE020102)

  • Jonathan Y An
  • Jeffrey S McLean

National Institute on Aging (AG054180,AG038070,AG038070)

  • Catherine Kaczorowski

National Institutes of Health (TR002318)

  • Kristopher A Kerns

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of Washington (#4359-01) and of the Jackson Laboratory (#06005-A24) .

Reviewing Editor

  1. Veronica Galvan, UT Health San Antonio, United States

Publication history

  1. Received: December 10, 2019
  2. Accepted: April 17, 2020
  3. Accepted Manuscript published: April 28, 2020 (version 1)
  4. Version of Record published: May 13, 2020 (version 2)

Copyright

© 2020, An et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,031
    Page views
  • 672
    Downloads
  • 34
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Y An
  2. Kristopher A Kerns
  3. Andrew Ouellette
  4. Laura Robinson
  5. H Douglas Morris
  6. Catherine Kaczorowski
  7. So-Il Park
  8. Title Mekvanich
  9. Alex Kang
  10. Jeffrey S McLean
  11. Timothy C Cox
  12. Matt Kaeberlein
(2020)
Rapamycin rejuvenates oral health in aging mice
eLife 9:e54318.
https://doi.org/10.7554/eLife.54318

Further reading

    1. Cell Biology
    Enric Gutiérrez-Martínez, Susana Benet Garrabé ... Maria F Garcia-Parajo
    Research Article Updated

    The immunoglobulin-like lectin receptor CD169 (Siglec-1) mediates the capture of HIV-1 by activated dendritic cells (DCs) through binding to sialylated ligands. These interactions result in a more efficient virus capture as compared to resting DCs, although the underlying mechanisms are poorly understood. Using a combination of super-resolution microscopy, single-particle tracking and biochemical perturbations we studied the nanoscale organization of Siglec-1 on activated DCs and its impact on viral capture and its trafficking to a single viral-containing compartment. We found that activation of DCs leads to Siglec-1 basal nanoclustering at specific plasma membrane regions where receptor diffusion is constrained by Rho-ROCK activation and formin-dependent actin polymerization. Using liposomes with varying ganglioside concentrations, we further demonstrate that Siglec-1 nanoclustering enhances the receptor avidity to limiting concentrations of gangliosides carrying sialic ligands. Binding to either HIV-1 particles or ganglioside-bearing liposomes lead to enhanced Siglec-1 nanoclustering and global actin rearrangements characterized by a drop in RhoA activity, facilitating the final accumulation of viral particles in a single sac-like compartment. Overall, our work provides new insights on the role of the actin machinery of activated DCs in regulating the formation of basal Siglec-1 nanoclustering, being decisive for the capture and actin-dependent trafficking of HIV-1 into the virus-containing compartment.

    1. Cell Biology
    Viral S Shah, Jue Hou ... Jayaraj Rajagopal
    Tools and Resources

    The specific functional properties of a tissue are distributed amongst its component cell types. The various cells act coherently, as an ensemble, in order to execute a physiologic response. Modern approaches for identifying and dissecting novel physiologic mechanisms would benefit from an ability to identify specific cell types in live tissues that could then be imaged in real-time. Current techniques require the use of fluorescent genetic reporters that are not only cumbersome, but which only allow the simultaneous study of 3 or 4 cell types at a time. We report a non-invasive imaging modality that capitalizes on the endogenous autofluorescence signatures of the metabolic cofactors NAD(P)H and FAD. By marrying morphological characteristics with autofluorescence signatures, all seven of the airway epithelial cell types can be distinguished simultaneously in mouse tracheal explant in real-time. Furthermore, we find that this methodology for direct cell type specific identification avoids pitfalls associated with the use of ostensibly cell type-specific markers that are, in fact, altered by clinically relevant physiologic stimuli. Finally, we utilize this methodology to interrogate real-time physiology and identify dynamic secretory cell associated antigen passages (SAPs) that form in response to cholinergic stimulus. The identical process has been well documented in the intestine where the dynamic formation of secretory and goblet cell associated antigen passages (SAPs and GAPs) enable luminal antigen sampling. Given that airway secretory cells can be stimulated to make mucous within hours, we suspect that both SAPs and GAPs are also used for luminal antigen sampling in the airway. This hypothesis is supported by our observation that secretory cells with airway SAPs are frequently juxtaposed to antigen presenting cells.