Guanidine hydrochloride reactivates an ancient septin hetero-oligomer assembly pathway in budding yeast

  1. Courtney R Johnson
  2. Marc G Steingesser
  3. Andrew D Weems
  4. Anum Khan
  5. Amy Galdfelter
  6. Aurélie Bertin
  7. Michael A McMurray  Is a corresponding author
  1. University of Colorado Anschutz Medical Campus, United States
  2. University of North Carolina at Chapel Hill, United States
  3. Institut Curie, France

Abstract

Septin proteins evolved from ancestral GTPases and co-assemble into hetero-oligomers and cytoskeletal filaments. In Saccharomyces cerevisiae, five septins comprise two species of hetero-octamers, Cdc11/Shs1–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11/Shs1. Slow GTPase activity by Cdc12 directs the choice of incorporation of Cdc11 vs Shs1, but many septins, including Cdc3, lack GTPase activity. We serendipitously discovered that guanidine hydrochloride rescues septin function in cdc10 mutants by promoting assembly of non-native Cdc11/Shs1–Cdc12–Cdc3–Cdc3–Cdc12–Cdc11/Shs1 hexamers. We provide evidence that in S. cerevisiae Cdc3 guanidinium occupies the site of a 'missing' Arg side chain found in other fungal species where (i) the Cdc3 subunit is an active GTPase and (ii) Cdc10-less hexamers natively co-exist with octamers. We propose that guanidinium reactivates a latent septin assembly pathway that was suppressed during fungal evolution in order to restrict assembly to octamers. Since homodimerization by a GTPase-active human septin also creates hexamers that exclude Cdc10-like central subunits, our new mechanistic insights likely apply throughout phylogeny.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Courtney R Johnson

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marc G Steingesser

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew D Weems

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anum Khan

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Amy Galdfelter

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Aurélie Bertin

    Laboratoire Physico Chimie Curie, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael A McMurray

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    michael.mcmurray@cuanschutz.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4615-4334

Funding

National Institute of General Medical Sciences (R00GM086603)

  • Michael A McMurray

National Institute of General Medical Sciences (R01GM124024)

  • Michael A McMurray

Alzheimer's Association (NIRGD-12-241119)

  • Michael A McMurray

Rare Genomics Institute (BeHEARD Initiative)

  • Michael A McMurray

Agence Nationale de la Recherche (ANR-10-INSB-04)

  • Aurélie Bertin

Agence Nationale de la Recherche (ANR-10-LBX-0038)

  • Aurélie Bertin

National Science Foundation (MCB-1615138)

  • Anum Khan
  • Amy Galdfelter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Johnson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,270
    views
  • 270
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Courtney R Johnson
  2. Marc G Steingesser
  3. Andrew D Weems
  4. Anum Khan
  5. Amy Galdfelter
  6. Aurélie Bertin
  7. Michael A McMurray
(2020)
Guanidine hydrochloride reactivates an ancient septin hetero-oligomer assembly pathway in budding yeast
eLife 9:e54355.
https://doi.org/10.7554/eLife.54355

Share this article

https://doi.org/10.7554/eLife.54355

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.