1. Neuroscience
Download icon

Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behaviour

  1. Anton Fomenko  Is a corresponding author
  2. Kai-Hsiang Stanley Chen
  3. Jean-François Nankoo
  4. James Saravanamuttu
  5. Yanqiu Wang
  6. Mazen El-Baba
  7. Xue Xia
  8. Shakthi Sanjana Seerala
  9. Kullervo Hynynen
  10. Andres M Lozano  Is a corresponding author
  11. Robert Chen  Is a corresponding author
  1. University of Toronto, Canada
  2. National Taiwan University, Taiwan
  3. Toronto Western Hospital, Canada
  4. Sunnybrook Research Institute, Canada
Tools and Resources
  • Cited 7
  • Views 2,513
  • Annotations
Cite this article as: eLife 2020;9:e54497 doi: 10.7554/eLife.54497

Abstract

Low-intensity transcranial ultrasound (TUS) can non-invasively modulate human neural activity. We investigated how different fundamental sonication parameters influence the effects of TUS on the motor cortex (M1) of 16 healthy subjects by probing cortico-cortical excitability and behaviour. A low-intensity 500 kHz TUS transducer was coupled to a transcranial magnetic stimulation (TMS) coil. TMS was delivered 10 ms before the end of TUS to the left M1 hotspot of the first dorsal interosseous muscle. Varying acoustic parameters (pulse repetition frequency, duty cycle and sonication duration) on motor-evoked potential amplitude were examined. Paired-pulse measures of cortical inhibition and facilitation, and performance on a visuomotor task was also assessed. TUS safely suppressed TMS-elicited motor cortical activity, with longer sonication durations and shorter duty cycles when delivered in a blocked paradigm. TUS increased GABAA-mediated short-interval intracortical inhibition and decreased reaction time on visuomotor task but not when controlled with TUS at near-somatosensory threshold intensity.

Data availability

Data used for this study are included in the manuscript and supporting files.Files for 3D printing the stimulating devices and custom MATLAB scripts used for stimulation have been deposited into a cited GitHub repository.

Article and author information

Author details

  1. Anton Fomenko

    Krembil Research Institute, University of Toronto, Toronto, Canada
    For correspondence
    anton.fomenko@uhnresearch.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4131-6784
  2. Kai-Hsiang Stanley Chen

    Neurology, National Taiwan University, Taiwan, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean-François Nankoo

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. James Saravanamuttu

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Yanqiu Wang

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Mazen El-Baba

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Xue Xia

    Toronto Western Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Shakthi Sanjana Seerala

    Focused Ultrasound Group, Sunnybrook Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Kullervo Hynynen

    Focused Ultrasound Group, Sunnybrook Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Andres M Lozano

    Krembil Research Institute, University of Toronto, Toronto, Canada
    For correspondence
    lozano@uhnresearch.ca
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert Chen

    Toronto Western Hospital, Toronto, Canada
    For correspondence
    robert.chen@uhn.ca
    Competing interests
    The authors declare that no competing interests exist.

Funding

Canadian Institutes of Health Research (Banting and Best Doctoral Award)

  • Anton Fomenko

Canadian Institutes of Health Research (Foundation Grant,FDN 154292)

  • Robert Chen

University of Manitoba (Clinician Investigator Program)

  • Anton Fomenko

Canada Research Chairs (Neuroscience)

  • Andres M Lozano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All patients gave written informed consent and the protocol was approved by the UHN Research Ethics Board (Protocol #18-5082) in accordance with the Declaration of Helsinki on the use of human subjects in experiments.

Reviewing Editor

  1. Laura Dugué, Uni­ver­sité de Paris, France

Publication history

  1. Received: December 16, 2019
  2. Accepted: November 24, 2020
  3. Accepted Manuscript published: November 25, 2020 (version 1)
  4. Version of Record published: December 10, 2020 (version 2)

Copyright

© 2020, Fomenko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,513
    Page views
  • 350
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    P Christiaan Klink et al.
    Research Article Updated

    Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake nonhuman primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a retinotopically specific deactivation of default mode network nodes similar to previous observations in humans.

    1. Developmental Biology
    2. Neuroscience
    Eduardo Loureiro-Campos et al.
    Research Article

    The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.