Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behaviour

  1. Anton Fomenko  Is a corresponding author
  2. Kai-Hsiang Stanley Chen
  3. Jean-François Nankoo
  4. James Saravanamuttu
  5. Yanqiu Wang
  6. Mazen El-Baba
  7. Xue Xia
  8. Shakthi Sanjana Seerala
  9. Kullervo Hynynen
  10. Andres M Lozano  Is a corresponding author
  11. Robert Chen  Is a corresponding author
  1. University of Toronto, Canada
  2. National Taiwan University, Taiwan
  3. Toronto Western Hospital, Canada
  4. Sunnybrook Research Institute, Canada

Abstract

Low-intensity transcranial ultrasound (TUS) can non-invasively modulate human neural activity. We investigated how different fundamental sonication parameters influence the effects of TUS on the motor cortex (M1) of 16 healthy subjects by probing cortico-cortical excitability and behaviour. A low-intensity 500 kHz TUS transducer was coupled to a transcranial magnetic stimulation (TMS) coil. TMS was delivered 10 ms before the end of TUS to the left M1 hotspot of the first dorsal interosseous muscle. Varying acoustic parameters (pulse repetition frequency, duty cycle and sonication duration) on motor-evoked potential amplitude were examined. Paired-pulse measures of cortical inhibition and facilitation, and performance on a visuomotor task was also assessed. TUS safely suppressed TMS-elicited motor cortical activity, with longer sonication durations and shorter duty cycles when delivered in a blocked paradigm. TUS increased GABAA-mediated short-interval intracortical inhibition and decreased reaction time on visuomotor task but not when controlled with TUS at near-somatosensory threshold intensity.

Data availability

Data used for this study are included in the manuscript and supporting files.Files for 3D printing the stimulating devices and custom MATLAB scripts used for stimulation have been deposited into a cited GitHub repository.

Article and author information

Author details

  1. Anton Fomenko

    Krembil Research Institute, University of Toronto, Toronto, Canada
    For correspondence
    anton.fomenko@uhnresearch.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4131-6784
  2. Kai-Hsiang Stanley Chen

    Neurology, National Taiwan University, Taiwan, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean-François Nankoo

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. James Saravanamuttu

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Yanqiu Wang

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Mazen El-Baba

    Krembil Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Xue Xia

    Toronto Western Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Shakthi Sanjana Seerala

    Focused Ultrasound Group, Sunnybrook Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Kullervo Hynynen

    Focused Ultrasound Group, Sunnybrook Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Andres M Lozano

    Krembil Research Institute, University of Toronto, Toronto, Canada
    For correspondence
    lozano@uhnresearch.ca
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert Chen

    Toronto Western Hospital, Toronto, Canada
    For correspondence
    robert.chen@uhn.ca
    Competing interests
    The authors declare that no competing interests exist.

Funding

Canadian Institutes of Health Research (Banting and Best Doctoral Award)

  • Anton Fomenko

Canadian Institutes of Health Research (Foundation Grant,FDN 154292)

  • Robert Chen

University of Manitoba (Clinician Investigator Program)

  • Anton Fomenko

Canada Research Chairs (Neuroscience)

  • Andres M Lozano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All patients gave written informed consent and the protocol was approved by the UHN Research Ethics Board (Protocol #18-5082) in accordance with the Declaration of Helsinki on the use of human subjects in experiments.

Copyright

© 2020, Fomenko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,381
    views
  • 729
    downloads
  • 104
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anton Fomenko
  2. Kai-Hsiang Stanley Chen
  3. Jean-François Nankoo
  4. James Saravanamuttu
  5. Yanqiu Wang
  6. Mazen El-Baba
  7. Xue Xia
  8. Shakthi Sanjana Seerala
  9. Kullervo Hynynen
  10. Andres M Lozano
  11. Robert Chen
(2020)
Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behaviour
eLife 9:e54497.
https://doi.org/10.7554/eLife.54497

Share this article

https://doi.org/10.7554/eLife.54497

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.