Abstract

Activin A functions in BMP signaling in two ways: it either engages ACVR1B to activate Smad2/3 signaling or binds ACVR1 to form a non-signaling complex (NSC). Although the former property has been studied extensively, the roles of the NSC remain unexplored. The genetic disorder fibrodysplasia ossificans progressiva (FOP) provides a unique window into ACVR1/Activin A signaling because in that disease Activin can either signal through FOP-mutant ACVR1 or form NSCs with wild type ACVR1. To explore the role of the NSC, we generated 'agonist-only' Activin A muteins that activate ACVR1B but cannot form the NSC with ACVR1. Using one of these muteins we demonstrate that failure to form the NSC in FOP results in more severe disease pathology. These results provide the first evidence for a biological role for the NSC in vivo and pave the way for further exploration of the NSC's physiological role in corresponding knock-in mice.

Data availability

We are providing source files for the data shown in the main figures of the manuscript.

Article and author information

Author details

  1. Senem Aykul

    Skeletal Diseases TFA, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Senem Aykul, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
  2. Richard A Corpina

    Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    No competing interests declared.
  3. Erich J Goebel

    Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, United States
    Competing interests
    No competing interests declared.
  4. Camille J Cunanan

    Skeletal Diseases TFA, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    No competing interests declared.
  5. Alexandra Dimitriou

    Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    No competing interests declared.
  6. Hyonjong Kim

    Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Hyonjong Kim, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
  7. Qian Zhang

    Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Qian Zhang, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
  8. Ashique Rafique

    Therapeutic Antibodies, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Ashique Rafique, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
  9. Raymond Leidich

    Bioassay, Molecular Biology, and Protein Development, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Raymond Leidich, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
  10. Xin Wang

    Bioassay, Molecular Biology, and Protein Development, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Xin Wang, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
  11. Joyce McClain

    Genome Engineering Technologies, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Joyce McClain, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
  12. Johanna Jimenez

    Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Johanna Jimenez, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
  13. Kalyan C Nannuru

    Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Kalyan C Nannuru, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
  14. Nyanza J Rothman

    Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Nyanza J Rothman, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
  15. John B Lees-Shepard

    Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    John B Lees-Shepard, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1275-5799
  16. Erik Martinez-Hackert

    Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
  17. Andrew J Murphy

    Research & Development, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Andrew J Murphy, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
  18. Thomas B Thompson

    Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, United States
    Competing interests
    No competing interests declared.
  19. Aris N Economides

    Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, United States
    For correspondence
    aris.economides@regeneron.com
    Competing interests
    Aris N Economides, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6508-8942
  20. Vincent Idone

    Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States
    For correspondence
    vincent.idone@regeneron.com
    Competing interests
    Vincent Idone, The author is an employee of Regeneron Pharmaceuticals, Inc. Regeneron is currently developing a monoclonal antibody that neutralizes Activin A (REGN2477) as a potential therapy in fibrodysplasia ossificans progressiva (see https://clinicaltrials.gov/ct2/show/NCT03188666)..

Funding

The authors declare that there was no funding for this work.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols.

Copyright

© 2020, Aykul et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,600
    views
  • 476
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Senem Aykul
  2. Richard A Corpina
  3. Erich J Goebel
  4. Camille J Cunanan
  5. Alexandra Dimitriou
  6. Hyonjong Kim
  7. Qian Zhang
  8. Ashique Rafique
  9. Raymond Leidich
  10. Xin Wang
  11. Joyce McClain
  12. Johanna Jimenez
  13. Kalyan C Nannuru
  14. Nyanza J Rothman
  15. John B Lees-Shepard
  16. Erik Martinez-Hackert
  17. Andrew J Murphy
  18. Thomas B Thompson
  19. Aris N Economides
  20. Vincent Idone
(2020)
Activin A forms a non-signaling complex with ACVR1 and type II Activin/BMP receptors via its finger 2 tip loop
eLife 9:e54582.
https://doi.org/10.7554/eLife.54582

Share this article

https://doi.org/10.7554/eLife.54582

Further reading

    1. Biochemistry and Chemical Biology
    Marius Landau, Sherif Elsabbagh ... Joachim E Schultz
    Research Article

    The biosynthesis of cyclic 3′,5′-adenosine monophosphate (cAMP) by mammalian membrane-bound adenylyl cyclases (mACs) is predominantly regulated by G-protein-coupled receptors (GPCRs). Up to now the two hexahelical transmembrane domains of mACs were considered to fix the enzyme to membranes. Here, we show that the transmembrane domains serve in addition as signal receptors and transmitters of lipid signals that control Gsα-stimulated mAC activities. We identify aliphatic fatty acids and anandamide as receptor ligands of mAC isoforms 1–7 and 9. The ligands enhance (mAC isoforms 2, 3, 7, and 9) or attenuate (isoforms 1, 4, 5, and 6) Gsα-stimulated mAC activities in vitro and in vivo. Substitution of the stimulatory membrane receptor of mAC3 by the inhibitory receptor of mAC5 results in a ligand inhibited mAC5–mAC3 chimera. Thus, we discovered a new class of membrane receptors in which two signaling modalities are at a crossing, direct tonic lipid and indirect phasic GPCR–Gsα signaling regulating the biosynthesis of cAMP.

    1. Biochemistry and Chemical Biology
    Shraddha KC, Kenny H Nguyen ... Thomas C Boothby
    Research Article

    The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.