Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering

  1. Friso S Aalbers
  2. Maximilian JLJ Fürst
  3. Stefano Rovida
  4. Milos Trajkovic
  5. J Rubén Gómez Castellanos
  6. Sebastian Bartsch
  7. Andreas Vogel
  8. Andrea Mattevi
  9. Marco W Fraaije  Is a corresponding author
  1. University of Groningen, Netherlands
  2. Cambridge Biomedical Campus, United Kingdom
  3. University of Pavia, Italy
  4. c-LEcta GmbH, Germany

Abstract

Enzyme instability is an important limitation for the investigation and application of enzymes. Therefore, methods to rapidly and effectively improve enzyme stability are highly appealing. In this study we applied a computational method (FRESCO) to guide the engineering of an alcohol dehydrogenase. Of the 177 selected mutations, 25 mutations brought about a significant increase in apparent melting temperature (ΔTm ≥ +3 °C). By combining mutations, a 10-fold mutant was generated with a Tm of 94 °C (+51 °C relative to wildtype), almost reaching water's boiling point, and the highest increase with FRESCO to date. The 10-fold mutant's structure was elucidated, which enabled the identification of an activity-impairing mutation. After reverting this mutation, the enzyme showed no loss in activity compared to wildtype, while displaying a Tm of 88 °C (+45 °C relative to wildtype). This work demonstrates the value of enzyme stabilization through computational library design.

Data availability

Diffraction data have been deposited in PDB under the accession codes 6TQ3, 6TQ5, and 6TQ8.Details on the structures, enzyme kinetic data and statistical analyses are included in the supplementary information.

The following data sets were generated

Article and author information

Author details

  1. Friso S Aalbers

    Molecular Enzymology Group, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2142-9661
  2. Maximilian JLJ Fürst

    MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Stefano Rovida

    Department of Biology and Biotechnology L. Spallanzani"", University of Pavia, Pavia, Italy
    Competing interests
    No competing interests declared.
  4. Milos Trajkovic

    Molecular Enzymology group, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  5. J Rubén Gómez Castellanos

    Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
    Competing interests
    No competing interests declared.
  6. Sebastian Bartsch

    R&D, c-LEcta GmbH, Leipzig, Germany
    Competing interests
    Sebastian Bartsch, A patent application on the original ADH was filed by c-LEcta (WO 2019/012095).
  7. Andreas Vogel

    R&D, c-LEcta GmbH, Leipzig, Germany
    Competing interests
    No competing interests declared.
  8. Andrea Mattevi

    Dept. Biology and Biotechnology, University of Pavia, Pavia, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9523-7128
  9. Marco W Fraaije

    Molecular Enzymology group, University of Groningen, Groningen, Netherlands
    For correspondence
    m.w.fraaije@rug.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6346-5014

Funding

European Commission (EU-H2020-ROBOX grant agreement nr. 635734)

  • Friso S Aalbers
  • Maximilian JLJ Fürst
  • Stefano Rovida
  • J Rubén Gómez Castellanos
  • Sebastian Bartsch
  • Andreas Vogel
  • Andrea Mattevi
  • Marco W Fraaije

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Aalbers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,972
    views
  • 726
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Friso S Aalbers
  2. Maximilian JLJ Fürst
  3. Stefano Rovida
  4. Milos Trajkovic
  5. J Rubén Gómez Castellanos
  6. Sebastian Bartsch
  7. Andreas Vogel
  8. Andrea Mattevi
  9. Marco W Fraaije
(2020)
Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering
eLife 9:e54639.
https://doi.org/10.7554/eLife.54639

Share this article

https://doi.org/10.7554/eLife.54639

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.