Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering

  1. Friso S Aalbers
  2. Maximilian JLJ Fürst
  3. Stefano Rovida
  4. Milos Trajkovic
  5. J Rubén Gómez Castellanos
  6. Sebastian Bartsch
  7. Andreas Vogel
  8. Andrea Mattevi
  9. Marco W Fraaije  Is a corresponding author
  1. University of Groningen, Netherlands
  2. Cambridge Biomedical Campus, United Kingdom
  3. University of Pavia, Italy
  4. c-LEcta GmbH, Germany

Abstract

Enzyme instability is an important limitation for the investigation and application of enzymes. Therefore, methods to rapidly and effectively improve enzyme stability are highly appealing. In this study we applied a computational method (FRESCO) to guide the engineering of an alcohol dehydrogenase. Of the 177 selected mutations, 25 mutations brought about a significant increase in apparent melting temperature (ΔTm ≥ +3 °C). By combining mutations, a 10-fold mutant was generated with a Tm of 94 °C (+51 °C relative to wildtype), almost reaching water's boiling point, and the highest increase with FRESCO to date. The 10-fold mutant's structure was elucidated, which enabled the identification of an activity-impairing mutation. After reverting this mutation, the enzyme showed no loss in activity compared to wildtype, while displaying a Tm of 88 °C (+45 °C relative to wildtype). This work demonstrates the value of enzyme stabilization through computational library design.

Data availability

Diffraction data have been deposited in PDB under the accession codes 6TQ3, 6TQ5, and 6TQ8.Details on the structures, enzyme kinetic data and statistical analyses are included in the supplementary information.

The following data sets were generated

Article and author information

Author details

  1. Friso S Aalbers

    Molecular Enzymology Group, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2142-9661
  2. Maximilian JLJ Fürst

    MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Stefano Rovida

    Department of Biology and Biotechnology L. Spallanzani"", University of Pavia, Pavia, Italy
    Competing interests
    No competing interests declared.
  4. Milos Trajkovic

    Molecular Enzymology group, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  5. J Rubén Gómez Castellanos

    Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
    Competing interests
    No competing interests declared.
  6. Sebastian Bartsch

    R&D, c-LEcta GmbH, Leipzig, Germany
    Competing interests
    Sebastian Bartsch, A patent application on the original ADH was filed by c-LEcta (WO 2019/012095).
  7. Andreas Vogel

    R&D, c-LEcta GmbH, Leipzig, Germany
    Competing interests
    No competing interests declared.
  8. Andrea Mattevi

    Dept. Biology and Biotechnology, University of Pavia, Pavia, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9523-7128
  9. Marco W Fraaije

    Molecular Enzymology group, University of Groningen, Groningen, Netherlands
    For correspondence
    m.w.fraaije@rug.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6346-5014

Funding

European Commission (EU-H2020-ROBOX grant agreement nr. 635734)

  • Friso S Aalbers
  • Maximilian JLJ Fürst
  • Stefano Rovida
  • J Rubén Gómez Castellanos
  • Sebastian Bartsch
  • Andreas Vogel
  • Andrea Mattevi
  • Marco W Fraaije

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Aalbers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.54639

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.