Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering

  1. Friso S Aalbers
  2. Maximilian JLJ Fürst
  3. Stefano Rovida
  4. Milos Trajkovic
  5. J Rubén Gómez Castellanos
  6. Sebastian Bartsch
  7. Andreas Vogel
  8. Andrea Mattevi
  9. Marco W Fraaije  Is a corresponding author
  1. University of Groningen, Netherlands
  2. Cambridge Biomedical Campus, United Kingdom
  3. University of Pavia, Italy
  4. c-LEcta GmbH, Germany

Abstract

Enzyme instability is an important limitation for the investigation and application of enzymes. Therefore, methods to rapidly and effectively improve enzyme stability are highly appealing. In this study we applied a computational method (FRESCO) to guide the engineering of an alcohol dehydrogenase. Of the 177 selected mutations, 25 mutations brought about a significant increase in apparent melting temperature (ΔTm ≥ +3 °C). By combining mutations, a 10-fold mutant was generated with a Tm of 94 °C (+51 °C relative to wildtype), almost reaching water's boiling point, and the highest increase with FRESCO to date. The 10-fold mutant's structure was elucidated, which enabled the identification of an activity-impairing mutation. After reverting this mutation, the enzyme showed no loss in activity compared to wildtype, while displaying a Tm of 88 °C (+45 °C relative to wildtype). This work demonstrates the value of enzyme stabilization through computational library design.

Data availability

Diffraction data have been deposited in PDB under the accession codes 6TQ3, 6TQ5, and 6TQ8.Details on the structures, enzyme kinetic data and statistical analyses are included in the supplementary information.

The following data sets were generated

Article and author information

Author details

  1. Friso S Aalbers

    Molecular Enzymology Group, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2142-9661
  2. Maximilian JLJ Fürst

    MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Stefano Rovida

    Department of Biology and Biotechnology L. Spallanzani"", University of Pavia, Pavia, Italy
    Competing interests
    No competing interests declared.
  4. Milos Trajkovic

    Molecular Enzymology group, University of Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  5. J Rubén Gómez Castellanos

    Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
    Competing interests
    No competing interests declared.
  6. Sebastian Bartsch

    R&D, c-LEcta GmbH, Leipzig, Germany
    Competing interests
    Sebastian Bartsch, A patent application on the original ADH was filed by c-LEcta (WO 2019/012095).
  7. Andreas Vogel

    R&D, c-LEcta GmbH, Leipzig, Germany
    Competing interests
    No competing interests declared.
  8. Andrea Mattevi

    Dept. Biology and Biotechnology, University of Pavia, Pavia, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9523-7128
  9. Marco W Fraaije

    Molecular Enzymology group, University of Groningen, Groningen, Netherlands
    For correspondence
    m.w.fraaije@rug.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6346-5014

Funding

European Commission (EU-H2020-ROBOX grant agreement nr. 635734)

  • Friso S Aalbers
  • Maximilian JLJ Fürst
  • Stefano Rovida
  • J Rubén Gómez Castellanos
  • Sebastian Bartsch
  • Andreas Vogel
  • Andrea Mattevi
  • Marco W Fraaije

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Aalbers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,765
    views
  • 691
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Friso S Aalbers
  2. Maximilian JLJ Fürst
  3. Stefano Rovida
  4. Milos Trajkovic
  5. J Rubén Gómez Castellanos
  6. Sebastian Bartsch
  7. Andreas Vogel
  8. Andrea Mattevi
  9. Marco W Fraaije
(2020)
Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering
eLife 9:e54639.
https://doi.org/10.7554/eLife.54639

Share this article

https://doi.org/10.7554/eLife.54639

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.