The Cryo-EM structure of pannexin 1 reveals unique motifs for ion selection and inhibition

  1. Kevin Michalski
  2. Johanna L Syrjanen
  3. Erik Henze
  4. Julia Kumpf
  5. Hiro Furukawa  Is a corresponding author
  6. Toshimitsu Kawate  Is a corresponding author
  1. Department of Molecular Medicine, Cornell University, United States
  2. WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, United States
4 figures, 1 video, 2 tables and 1 additional file

Figures

Figure 1 with 4 supplements
frPanx1 forms a heptameric ion channel.

(a) Whole-cell patch clamp recordings from HEK 293 cells expressing hPanx1, frPanx1, and frPanx1-ΔLC. Cells were clamped at −60 mV and stepped from −100 mV to +100 mV for 1 s in 20 mV increments. To facilitate electrophysiological studies, we inserted a Gly-Ser motif immediately after the start Met to enhance Panx1 channel opening as we previously described (Michalski et al., 2018). CBX (100 μM) was applied through a rapid solution exchanger. (b) Current-voltage plot of the same channels shown in (a). Recordings performed in normal external buffer are shown as circles, and those performed during CBX (100 μM) application are shown as squares. Each point represents the mean of at least three different recordings, and error bars represent the SEM. (c) EM map of frPanx1-ΔLC shown from within the plane of the membrane. Each protomer is colored differently, with the extracellular side designated as ‘out’ and the intracellular side as ‘in.’ (d) Overall structure of frPanx1-ΔLC viewed from within the lipid bilayer. (e) Structure of frPanx1 viewed from the extracellular face.

Figure 1—figure supplement 1
Sequence alignment and structural features.

Amino acid sequence of frPanx1 compared to various Panx1 orthologues. Amino acids highlighted in black are completely conserved, in gray are similar, and in white are not conserved. Disulfide-forming cysteines are highlighted in yellow. Secondary structure features are shown above the sequence alignment. Green boxes depict the transmembrane helix boundaries, and orange boxes show deleted or truncated regions to create frPanx1-ΔLC.

Figure 1—figure supplement 2
Characterization of frPanx1-ΔLC.

(a) Size exclusion chromatogram of frPanx1-ΔLC. Concentrated protein was injected onto a Superose 6 10/300 column equilibrated with 150 mM NaCl, 10 mM Tris pH 8.0, 1 mM EDTA, 0.5 mM DDM. (b) SDS-PAGE analysis of peak fractions collected from (a). (c) Size exclusion chromatogram of frPanx1-ΔLC after reconstitution into nanodiscs. The running buffer contained 150 mM NaCl, 10 mM Tris pH 8.0, 1 mM EDTA. (d) SDS-PAGE analysis of peak fractions collected from (c). (e) Whole-cell recordings of wild-type (no Gly-Ser) hPanx1, frPanx1, and frPanx1-ΔLC. Whole-cell patches from transfected HEK 293 T cells were obtained, held at −60 mV, and stepped between −100 mV and +160 mV for 1 s. CBX (100 μM) was applied through a rapid solution exchanger. (f) Current-voltage plot of wild-type pannexin recordings shown in (e). Each circle represents the mean current at a particular voltage, with squares depicting the same current when treated with 100 μM CBX. N = 3–11.

Figure 1—figure supplement 3
Cryo-EM image processing workflow for single particle analysis of frPanx1-ΔLC.

(a) A representative micrograph (scale bar = 50 nm), representative 2D class averages, and the 3D classification workflow are shown. (b) The FSC plots of the two half maps (top) and the map vs model (bottom) are shown. (c) The angular distribution plot for class 3. (d) Local resolutions of class three were calculated using ResMap (Kucukelbir et al., 2014).

Figure 1—figure supplement 4
Representative cryo-EM density of frPanx1-ΔLC.

Each domain is shown as stick representation and fit into the corresponding density contoured at σ = 3.0.

Figure 2 with 3 supplements
Subunit architecture of frPanx1.

(a) Structure of the frPanx1 protomer. Each domain is colored according to the cartoon scheme presented in (b). (c) Superimposition of the transmembrane helices from frPanx1 (red), connexin-26 (green), innexin-6 (orange), and LRRC8 (blue) shown top-down from the extracellular side (top) or from within the plane of the membrane (bottom). (d-g) Cartoon representation of the extracellular loops of large pore forming channels. ECL1 is colored in light blue, and ECL2 is colored in dark blue, and disulfide bridges are shown as yellow spheres. These domains are viewed from the same angle (from top) as shown in the top panel in (c).

Figure 2—figure supplement 1
Comparison of frPanx1 with other large pore channels.

The structures of connexin-26 (PDB: 2ZW3), LRRC8 (PDB: 6NZW), Panx1, innexin-6 (PDB: 5H1Q), and CALHM1 (PDB: 6VAM) are shown from within the plane of the membrane (top) and viewed from the extracellular side (bottom). One subunit of each channel is shown colored with transmembrane domains in orange/yellow, ECL1 is colored in light blue, ECL2 in dark blue, ICL1 in gray, ICL2 in green, and NTL in red, as shown in Figure 2a.

Figure 2—figure supplement 2
2D classes of full-length frog and human pannexin 1.

(a) 2D classes of the full-length frog pannexin1 in nanodiscs showing top (left) and side (right) views. All seven protomers are labeled with numbers in the 2D class of the top view. (b) 2D classes of the full-length human pannexin one in DDM in the similar orientation to panel a. The top view shows a heptameric assembly (numbered). No symmetry was imposed in 2D classification.

Figure 2—figure supplement 3
Inter-subunit interactions.

Three major inter-subunit interfaces between two neighboring subunits (blue and red) are highlighted in orange ovals (left). Close-up views (right) show the highly-conserved residues mediating the inter-subunit interactions.

Figure 3 with 2 supplements
Permeation and ion selectivity of Panx1 channels.

(a) HOLE (Smart et al., 1996) diagram demonstrating constrictions along the permeation pathway. NTL; N-terminal loop. (b) Surface representation of the internal space along the molecular 7-fold axis running through the center of frPanx1. The surface was generate using HOLE. (c and d) Top view facing the extracellular side (c) or side view (d) of frPanx1, with ECL1 shown in light blue and ECL2 in dark blue. Trp74 and Arg75 are shown as sticks. (e) Reversal potentials of various hPanx1 ion selectivity mutants. Each point represents the Erev measured in NaCl (black), NaGluc (red), or NMDGCl (blue), and bars represent the mean values. I-V curves were obtained by a ramp protocol from −80 mV to +80 mV. (f) Close-up view of the Trp74-Arg75 interaction at the interface of protomer A (blue) and B (red).

Figure 3—figure supplement 1
Representative traces of the ramp recordings.

HEK293 cells were held at −60 mV and ramped between −100 mV and + 100 mV over 3 s duration. The numbers indicate the reversal potentials in mV.

Figure 3—figure supplement 2
Electrostatic surface potential of the ion permeation pathway.

A coronal section of frPanx1-ΔLC shows the surface of the ion permeation pathway. Electrostatic surface potential was calculated using APBS plugin (Baker et al., 2001) in Pymol (Schrodinger, LLC, 2015) and presented in the range between −15 kT/e (red: acidic) and +15 kT/e (blue: basic).

CBX action requires residues from both ECL1 and ECL2.

(a and b) Surface (a) and cartoon (b) representations of the frPanx1 ECL1 (light blue) and ECL2 (dark blue), with potential CBX-interacting residues shown in orange. (c) Quantification of whole-cell currents from hPanx1 mutants when treated with CBX (100 μM). Mutants are numbered according to the hPanx1 sequence while the mutants in parenthesis are the corresponding residues in frPanx1. Recordings were performed by stepping to +100 mV in the absence or presence of CBX, and each point represents the normalized current amplitude during the CBX application. Bars represent the mean value from each mutant. Asterisks indicate significance of p<0.05 determined by one-way ANOVA followed by Dunnett’s test comparing WT to each mutant (F262C: p=0.0007; I247C: p=0.0471; V258C: p=0.0363).

Videos

Video 1
Cryo-EM density of frPanx1-ΔLC.

The model is shown as wire representation and fit into the corresponding density contoured at σ = 3.0. Each domain is colored differently and Tryp74 and Arg75 are labeled in the close-up view.

Tables

Table 1
Cryo-EM data collection, refinement and validation statistics.
frPanx- ΔLC
(EMD-21150)
(PDB: 6VD7)
Data collection and processing
Magnification130,000
Voltage (kV)300
Electron exposure (e–/Å2)57.2
Defocus range (μm)1.2–2.8
Pixel size (Å)1.07
Symmetry imposedC7
Initial particle images (no.)297374
Final particle images (no.)90185
Map resolution (Å)
FSC threshold
3.02
0.143
Refinement
Initial model used (PDB code)de novo
Model resolution (Å)
FSC threshold
3.29
0.5
Model resolution range (Å)3–6
Map sharpening B factor (Å2)−90
Model composition
Non-hydrogen atoms
Protein residues
Ligands

16506
2079
0
CC map vs. model (%)0.85
R.m.s. deviations
Bond lengths (Å)
Bond angles (°)

0.008
0.759
Validation
MolProbity score
Clashscore
Poor rotamers (%)

1.92
5.96
0.78
Ramachandran plot
Favored (%)
Allowed (%)
Disallowed (%)

88.32
11.68
0
Key resources table
Reagent type
(species) or resource
DesignationSource or referenceIdentifiersAdditional
information
Gene (Xenopus tropicalis)frPanx1Synthesized by GenscriptNCBI Reference Sequence: NP_001123728.1Frog pannexin-1 gene sequence
Gene (Homo sapiens)hPanx1Synthesized by GenscriptNCBI Reference Sequence: NP_056183.2Human pannexin-1 gene sequence
Cell line (Homo sapiens)HEK293T cellsATCCCat#: CRL-3216, RRID: CVCL_0045
Cell line (Spodoptera frugiperda)Sf9 cellsATCCCat#: CRL-1711, RRID: CVCL_0549
Recombinant DNA reagentpIE2 hPanx1doi: 10.1085/jgp.201711804Mammalian expression vector for electrophysiology presented in Figure 1—figure supplement 1 and 2
Recombinant DNA reagentpIE2 hPanx1 +GSdoi: 10.1085/jgp.201711804Mammalian expression vector for electrophysiology presented in Figures 1, 3 and 4
Recombinant DNA reagentpIE2 frPanx1This paperMammalian expression vector for electrophysiology presented in Figure 1—figure supplement 1 and 2
Recombinant DNA reagentpIE2 frPanx1 +GSThis paperMammalian expression vector for electrophysiology presented in Figure 1
Recombinant DNA reagentpIE2 frPanx1-ΔLCThis paperMammalian expression vector for electrophysiology presented in Figure 1—figure supplement 1 and 2
Recombinant DNA reagentpIE2 frPanx1-ΔLC +GSThis paperMammalian expression vector for electrophysiology presented in Figure 1
Recombinant DNA reagentpC-NG-FB7 frPanx1-ΔLCThis paperInsect cell/baculovirus expression construct
Recombinant DNA reagentpC-NG-FB7 frPanx1This paperInsect cell/baculovirus expression construct
Recombinant DNA reagentpC-NG-FB7 hPanx1This paperInsect cell/baculovirus expression construct
Peptide, recombinant proteinMSP2N2doi: 10.1016/S0076-6879(09)64011–8nanodisc expression construct
Commercial assay or kitFugene 6PromegaCat#: E2691
Chemical compound, drugCarbenoxoloneSigmaCat#: C4790
Chemical compound, drugC12E8AnatraceCat#: APO128
Chemical compound, drugDDMAnatraceCat#: D310
Chemical compound, drugSoybean polar lipid extractAvantiCat#: 541602
Software, algorithmcisTEMdoi: 10.7554/eLife.35383RRID: SCR_016502
Software, algorithmWarpdoi: 10.1038/s41592-019-0580-y
Software, algorithmCootdoi: 10.1107/S0907444904019158RRID: SCR_014222
Software, algorithmPHENIXdoi: 10.1107/S09074449052925RRID: SCR_014224
Software, algorithmAxon pClamp 10.5Axon (Molecular Devices)RRID: SCR_011323

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin Michalski
  2. Johanna L Syrjanen
  3. Erik Henze
  4. Julia Kumpf
  5. Hiro Furukawa
  6. Toshimitsu Kawate
(2020)
The Cryo-EM structure of pannexin 1 reveals unique motifs for ion selection and inhibition
eLife 9:e54670.
https://doi.org/10.7554/eLife.54670