Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions

  1. Michael J Prigge
  2. Matthieu Platre
  3. Nikita Kadakia
  4. Yi Zhang
  5. Kathleen Greenham
  6. Whitnie Szutu
  7. Bipin Kumar Pandey
  8. Rahul Arvind Bhosale
  9. Malcolm J Bennett
  10. Wolfgang Busch
  11. Mark Estelle  Is a corresponding author
  1. University of California, San Diego, United States
  2. Salk Institute for Biological Sciences, United States
  3. University of Nottingham, United Kingdom
  4. Salk Institute for Biological Studies, United States

Abstract

The TIR1/AFB auxin co-receptors mediate diverse responses to the plant hormone auxin. The Arabidopsis genome encodes six TIR1/AFB proteins representing three of the four clades that were established prior to angiosperm radiation. To determine the role of these proteins in plant development we performed an extensive genetic analysis involving the generation and characterization of all possible multiply-mutant lines. We find that loss of all six TIR1/AFB proteins results in early embryo defects and eventually seed abortion, and yet a single wild-type allele of TIR1 or AFB2 is sufficient to support growth throughout development. Our analysis reveals extensive functional overlap between even the most distantly related TIR1/AFB genes except for AFB1. Surprisingly, AFB1 has a specialized function in rapid auxin-dependent inhibition of root growth and early phase of root gravitropism. This activity may be related to a difference in subcellular localization compared to the other members of the family.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 1-figure supplement 2B, Figure 1-figure supplement 4, Figure 1-figure supplement 5. Figure 5-figure supplement 1, Figure 6, Figure 6-figure supplement 2 , Figure 7, Figure 7-figure supplement 1

The following previously published data sets were used
    1. Eric J Carpenter et al
    (2019) One 1000 plant transciptomics
    https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/oneKP_capstone_2019.

Article and author information

Author details

  1. Michael J Prigge

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0671-2538
  2. Matthieu Platre

    Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Sciences, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nikita Kadakia

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yi Zhang

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kathleen Greenham

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7681-5263
  6. Whitnie Szutu

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bipin Kumar Pandey

    School of Biosciences, University of Nottingham, Loughborough, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9614-1347
  8. Rahul Arvind Bhosale

    School of Biosciences, Plant Sciences, University of Nottingham, Loughborough, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6515-4922
  9. Malcolm J Bennett

    Plant Sciences Division, University of Nottingham, Loughborough, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Wolfgang Busch

    Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mark Estelle

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    For correspondence
    mestelle@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2613-8652

Funding

National Institutes of Health (GM43644)

  • Mark Estelle

Human Frontier Science Program (LT000340/2019-L)

  • Matthieu Platre

Biotechnology and Biological Sciences Research Council (research fellowship)

  • Rahul Arvind Bhosale

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Prigge et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,154
    views
  • 1,217
    downloads
  • 126
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Prigge
  2. Matthieu Platre
  3. Nikita Kadakia
  4. Yi Zhang
  5. Kathleen Greenham
  6. Whitnie Szutu
  7. Bipin Kumar Pandey
  8. Rahul Arvind Bhosale
  9. Malcolm J Bennett
  10. Wolfgang Busch
  11. Mark Estelle
(2020)
Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions
eLife 9:e54740.
https://doi.org/10.7554/eLife.54740

Share this article

https://doi.org/10.7554/eLife.54740

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.