Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions

  1. Michael J Prigge
  2. Matthieu Platre
  3. Nikita Kadakia
  4. Yi Zhang
  5. Kathleen Greenham
  6. Whitnie Szutu
  7. Bipin Kumar Pandey
  8. Rahul Arvind Bhosale
  9. Malcolm J Bennett
  10. Wolfgang Busch
  11. Mark Estelle  Is a corresponding author
  1. University of California, San Diego, United States
  2. Salk Institute for Biological Sciences, United States
  3. University of Nottingham, United Kingdom
  4. Salk Institute for Biological Studies, United States

Abstract

The TIR1/AFB auxin co-receptors mediate diverse responses to the plant hormone auxin. The Arabidopsis genome encodes six TIR1/AFB proteins representing three of the four clades that were established prior to angiosperm radiation. To determine the role of these proteins in plant development we performed an extensive genetic analysis involving the generation and characterization of all possible multiply-mutant lines. We find that loss of all six TIR1/AFB proteins results in early embryo defects and eventually seed abortion, and yet a single wild-type allele of TIR1 or AFB2 is sufficient to support growth throughout development. Our analysis reveals extensive functional overlap between even the most distantly related TIR1/AFB genes except for AFB1. Surprisingly, AFB1 has a specialized function in rapid auxin-dependent inhibition of root growth and early phase of root gravitropism. This activity may be related to a difference in subcellular localization compared to the other members of the family.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 1-figure supplement 2B, Figure 1-figure supplement 4, Figure 1-figure supplement 5. Figure 5-figure supplement 1, Figure 6, Figure 6-figure supplement 2 , Figure 7, Figure 7-figure supplement 1

The following previously published data sets were used
    1. Eric J Carpenter et al
    (2019) One 1000 plant transciptomics
    https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/oneKP_capstone_2019.

Article and author information

Author details

  1. Michael J Prigge

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0671-2538
  2. Matthieu Platre

    Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Sciences, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nikita Kadakia

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yi Zhang

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kathleen Greenham

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7681-5263
  6. Whitnie Szutu

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bipin Kumar Pandey

    School of Biosciences, University of Nottingham, Loughborough, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9614-1347
  8. Rahul Arvind Bhosale

    School of Biosciences, Plant Sciences, University of Nottingham, Loughborough, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6515-4922
  9. Malcolm J Bennett

    Plant Sciences Division, University of Nottingham, Loughborough, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Wolfgang Busch

    Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mark Estelle

    Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    For correspondence
    mestelle@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2613-8652

Funding

National Institutes of Health (GM43644)

  • Mark Estelle

Human Frontier Science Program (LT000340/2019-L)

  • Matthieu Platre

Biotechnology and Biological Sciences Research Council (research fellowship)

  • Rahul Arvind Bhosale

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Prigge et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,082
    views
  • 1,212
    downloads
  • 120
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Prigge
  2. Matthieu Platre
  3. Nikita Kadakia
  4. Yi Zhang
  5. Kathleen Greenham
  6. Whitnie Szutu
  7. Bipin Kumar Pandey
  8. Rahul Arvind Bhosale
  9. Malcolm J Bennett
  10. Wolfgang Busch
  11. Mark Estelle
(2020)
Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions
eLife 9:e54740.
https://doi.org/10.7554/eLife.54740

Share this article

https://doi.org/10.7554/eLife.54740

Further reading

    1. Cell Biology
    2. Developmental Biology
    Dilara N Anbarci, Jennifer McKey ... Blanche Capel
    Research Article

    The rete ovarii (RO) is an appendage of the ovary that has been given little attention. Although the RO appears in drawings of the ovary in early versions of Gray’s Anatomy, it disappeared from recent textbooks, and is often dismissed as a functionless vestige in the adult ovary. Using PAX8 immunostaining and confocal microscopy, we characterized the fetal development of the RO in the context of the mouse ovary. The RO consists of three distinct regions that persist in adult life, the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). While the cells of the IOR appear to form solid cords within the ovary, the EOR rapidly develops into a convoluted tubular epithelium ending in a distal dilated tip. Cells of the EOR are ciliated and exhibit cellular trafficking capabilities. The CR, connecting the EOR to the IOR, gradually acquires tubular epithelial characteristics by birth. Using microinjections into the distal dilated tip of the EOR, we found that luminal contents flow toward the ovary. Mass spectrometry revealed that the EOR lumen contains secreted proteins potentially important for ovarian function. We show that the cells of the EOR are closely associated with vasculature and macrophages, and are contacted by neuronal projections, consistent with a role as a sensory appendage of the ovary. The direct proximity of the RO to the ovary and its integration with the extraovarian landscape suggest that it plays an important role in ovary development and homeostasis.

    1. Developmental Biology
    Pooja Popli, Arin K Oestreich ... Ramakrishna Kommagani
    Research Article

    Recurrent pregnancy loss, characterized by two or more failed clinical pregnancies, poses a significant challenge to reproductive health. In addition to embryo quality and endometrial function, proper oviduct function is also essential for successful pregnancy establishment. Therefore, structural abnormalities or inflammation resulting from infection in the oviduct may impede the transport of embryos to the endometrium, thereby increasing the risk of miscarriage. However, our understanding of the biological processes that preserve the oviductal cellular structure and functional integrity is limited. Here, we report that autophagy-related protein ATG14 plays a crucial role in maintaining the cellular integrity of the oviduct by controlling inflammatory responses, thereby supporting efficient embryo transport. Specifically, the conditional depletion of the autophagy-related gene Atg14 in the oviduct causes severe structural abnormalities compromising its cellular integrity, leading to the abnormal retention of embryos. Interestingly, the selective loss of Atg14 in oviduct ciliary epithelial cells did not impact female fertility, highlighting the specificity of ATG14 function in distinct cell types within the oviduct. Mechanistically, loss of Atg14 triggered unscheduled pyroptosis via altering the mitochondrial integrity, leading to inappropriate embryo retention and impeded embryo transport in the oviduct. Finally, pharmacological activation of pyroptosis in pregnant mice phenocopied the genetically induced defect and caused impairment in embryo transport. Together, we found that ATG14 safeguards against unscheduled pyroptosis activation to enable embryo transport from the oviduct to uterus for the successful implantation. Of clinical significance, these findings provide possible insights into the underlying mechanism(s) of early pregnancy loss and might aid in developing novel prevention strategies using autophagy modulators.