1. Cell Biology
Download icon

STK25 suppresses Hippo signaling by regulating SAV1-STRIPAK antagonism

  1. Sung Jun Bae
  2. Lisheng Ni
  3. Xuelian Luo  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
Research Advance
  • Cited 10
  • Views 1,475
  • Annotations
Cite this article as: eLife 2020;9:e54863 doi: 10.7554/eLife.54863

Abstract

The MST-LATS kinase cascade is central to the Hippo pathway that controls tissue homeostasis, development, and organ size. The PP2A complex STRIPAKSLMAP blocks MST1/2 activation. The GCKIII family kinases associate with STRIPAK, but the functions of these phosphatase-associated kinases remain elusive. We previously showed that the scaffolding protein SAV1 promotes Hippo signaling by counteracting STRIPAK (Bae et al. 2017). Here, we show that the GCKIII kinase STK25 promotes STRIPAK-mediated inhibition of MST2 in human cells. Depletion of STK25 enhances MST2 activation without affecting the integrity of STRIPAKSLMAP. STK25 directly phosphorylates SAV1 and diminishes the ability of SAV1 to inhibit STRIPAK. Thus, STK25 as the kinase component of STRIPAK can inhibit the function of the STRIPAK inhibitor SAV1. This mutual antagonism between STRIPAK and SAV1 controls the initiation of Hippo signaling.

Data availability

All data generated or analyses during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sung Jun Bae

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lisheng Ni

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xuelian Luo

    Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    xuelian.luo@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5058-4695

Funding

National Institute of General Medical Sciences (GM107415)

  • Xuelian Luo

National Institute of General Medical Sciences (GM132275)

  • Xuelian Luo

Welch Foundation (I-1932)

  • Xuelian Luo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. William I. Weis, Stanford University School of Medicine, United States

Publication history

  1. Received: January 9, 2020
  2. Accepted: April 10, 2020
  3. Accepted Manuscript published: April 15, 2020 (version 1)
  4. Version of Record published: April 24, 2020 (version 2)

Copyright

© 2020, Bae et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,475
    Page views
  • 268
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Anirban Roy et al.
    Research Article Updated

    Skeletal muscle regeneration is regulated by coordinated activation of multiple signaling pathways. The unfolded protein response (UPR) is a major mechanism that detects and alleviates protein-folding stresses in the endoplasmic reticulum. However, the role of individual arms of the UPR in skeletal muscle regeneration remain less understood. In the present study, we demonstrate that IRE1α (also known as ERN1) and its downstream target, XBP1, are activated in skeletal muscle of mice upon injury. Myofiber-specific ablation of IRE1α or XBP1 in mice diminishes skeletal muscle regeneration that is accompanied with reduced number of satellite cells. Ex vivo cultures of myofiber explants demonstrate that ablation of IRE1α reduces the proliferative capacity of myofiber-associated satellite cells. Myofiber-specific ablation of IRE1α dampens Notch signaling and canonical NF-κB pathway in skeletal muscle of adult mice. Finally, targeted ablation of IRE1α also reduces Notch signaling, abundance of satellite cells, and skeletal muscle regeneration in the mdx mice, a model of Duchenne muscular dystrophy. Collectively, our experiments suggest that the IRE1α-mediated signaling promotes muscle regeneration through augmenting the proliferation of satellite cells in a cell non-autonomous manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Aixin Song et al.
    Research Article Updated

    UCH37, also known as UCHL5, is a highly conserved deubiquitinating enzyme (DUB) that associates with the 26S proteasome. Recently, it was reported that UCH37 activity is stimulated by branched ubiquitin (Ub) chain architectures. To understand how UCH37 achieves its unique debranching specificity, we performed biochemical and Nuclear Magnetic Resonance (NMR) structural analyses and found that UCH37 is activated by contacts with the hydrophobic patches of both distal Ubs that emanate from a branched Ub. In addition, RPN13, which recruits UCH37 to the proteasome, further enhances branched-chain specificity by restricting linear Ub chains from having access to the UCH37 active site. In cultured human cells under conditions of proteolytic stress, we show that substrate clearance by the proteasome is promoted by both binding and deubiquitination of branched polyubiquitin by UCH37. Proteasomes containing UCH37(C88A), which is catalytically inactive, aberrantly retain polyubiquitinated species as well as the RAD23B substrate shuttle factor, suggesting a defect in recycling of the proteasome for the next round of substrate processing. These findings provide a foundation to understand how proteasome degradation of substrates modified by a unique Ub chain architecture is aided by a DUB.