Structural and functional characterization of G protein-coupled receptors with deep mutational scanning

  1. Eric M Jones
  2. Nathan B Lubock
  3. A J Venkatakrishnan
  4. Jeffrey Wang
  5. Alex M Tseng
  6. Joseph M Paggi
  7. Naomi R Latorraca
  8. Daniel Cancilla
  9. Megan Satyadi
  10. Jessica E Davis
  11. M Madan Babu
  12. Ron O Dror  Is a corresponding author
  13. Sriram Kosuri  Is a corresponding author
  1. University of California, Los Angeles, United States
  2. Stanford University, United States
  3. MRC Laboratory of Molecular Biology, United Kingdom

Abstract

In humans, the >800 G protein-coupled receptors (GPCRs) are responsible for transducing diverse chemical stimuli to alter cell state, and are the largest class of drug targets. Their myriad structural conformations and various modes of signaling make it challenging to understand their structure and function. Here we developed a platform to characterize large libraries of GPCR variants in human cell lines with a barcoded transcriptional reporter of G-protein signal transduction. We tested 7,800 of 7,828 possible single amino acid substitutions to the beta-2 adrenergic receptor (β2AR) at four concentrations of the agonist isoproterenol. We identified residues specifically important for β2AR signaling, mutations in the human population that are potentially loss of function, and residues that modulate basal activity. Using unsupervised learning, we resolve residues critical for signaling, including all major structural motifs and molecular interfaces. We also find a previously uncharacterized structural latch spanning the first two extracellular loops that is highly conserved across Class A GPCRs and is conformationally rigid in both the inactive and active states of the receptor. More broadly, by linking deep mutational scanning with engineered transcriptional reporters, we establish a generalizable method for exploring pharmacogenomics, structure and function across broad classes of drug receptors.

Data availability

Sequencing data have been submitted to GEO and the accession code is GSE144819.

The following data sets were generated

Article and author information

Author details

  1. Eric M Jones

    Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center o, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    Eric M Jones, holds equity and is employed by Octant, Inc., a company to which patent rights based on this work have been licensed (Application No. 62/528,833).
  2. Nathan B Lubock

    Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    Nathan B Lubock, Employed by and holds equity in Octant Inc. to which patent rights based on this work have been licensed (Application No. 62/528,833).
  3. A J Venkatakrishnan

    Department of Computer Science, Institute for Computational and Mathematical Engineering, Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2819-3214
  4. Jeffrey Wang

    Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center o, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Alex M Tseng

    Department of Computer Science, Institute for Computational and Mathematical Engineering, Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Joseph M Paggi

    Department of Computer Science, Institute for Computational and Mathematical Engineering, Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  7. Naomi R Latorraca

    Biophysics Program, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Daniel Cancilla

    Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center o, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Megan Satyadi

    Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center o, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Jessica E Davis

    Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  11. M Madan Babu

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  12. Ron O Dror

    Biophysics Program, Stanford University, Stanford, United States
    For correspondence
    ron.dror@stanford.edu
    Competing interests
    No competing interests declared.
  13. Sriram Kosuri

    Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    sri@ucla.edu
    Competing interests
    Sriram Kosuri, holds equity and is employed by Octant, Inc., a company to which patent rights based on this work have been licensed to (Application No. 62/528,833).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4661-0600

Funding

National Science Foundation (1556207)

  • Sriram Kosuri

National Institutes of Health (GM007185)

  • Sriram Kosuri

National Institutes of Health (5T32GM008496)

  • Sriram Kosuri

National Institutes of Health (DP2GM114829)

  • Sriram Kosuri

Medical Research Council (MC_U105185859)

  • Sriram Kosuri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Jones et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,495
    views
  • 1,391
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric M Jones
  2. Nathan B Lubock
  3. A J Venkatakrishnan
  4. Jeffrey Wang
  5. Alex M Tseng
  6. Joseph M Paggi
  7. Naomi R Latorraca
  8. Daniel Cancilla
  9. Megan Satyadi
  10. Jessica E Davis
  11. M Madan Babu
  12. Ron O Dror
  13. Sriram Kosuri
(2020)
Structural and functional characterization of G protein-coupled receptors with deep mutational scanning
eLife 9:e54895.
https://doi.org/10.7554/eLife.54895

Share this article

https://doi.org/10.7554/eLife.54895

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Raji E Joseph, Thomas E Wales ... Amy H Andreotti
    Research Advance

    Inhibition of Bruton’s tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders, and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib, and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph et al., 2020). Here, we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.

    1. Biochemistry and Chemical Biology
    Bernd K Gilsbach, Franz Y Ho ... Christian Johannes Gloeckner
    Research Article

    The Parkinson’s disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis–Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a KM value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell. Furthermore, the R1441G PD variant located within a mutational hotspot in the Roc domain showed an increased catalytic efficiency. In contrast, the most common PD variant G2019S, located in the kinase domain, showed an increased KM and reduced catalytic efficiency, suggesting a negative feedback mechanism from the kinase domain to the G domain. Autophosphorylation of the G1+2 residue (T1343) in the Roc P-loop motif is critical for this phosphoregulation of both the KM and the kcat values of the Roc-catalyzed GTP hydrolysis, most likely by changing the monomer–dimer equilibrium. The LRRK2 T1343A variant has a similar increased kinase activity in cells compared to G2019S and the double mutant T1343A/G2019S has no further increased activity, suggesting that T1343 is crucial for the negative feedback in the LRRK2 signaling cascade. Together, our data reveal a novel intramolecular feedback regulation of the LRRK2 Roc G domain by a LRRK2 kinase-dependent mechanism. Interestingly, PD mutants differently change the kinetics of the GTPase cycle, which might in part explain the difference in penetrance of these mutations in PD patients.