Par protein localization during the early development of Mnemiopsis leidyi suggests different modes of epithelial organization in the Metazoa

  1. Miguel Salinas-Saavedra  Is a corresponding author
  2. Mark Q Martindale  Is a corresponding author
  1. National University of Ireland Galway, Ireland
  2. University of Florida, United States

Abstract

In bilaterians and cnidarians, epithelial cell-polarity is regulated by the interactions between Par proteins, Wnt/PCP signaling pathway, and cell-cell adhesion. Par proteins are highly conserved across Metazoa, including ctenophores. But strikingly, ctenophore genomes lack components of the Wnt/PCP pathway and cell-cell adhesion complexes raising the question if ctenophore cells are polarized by mechanisms involving Par proteins. Here, by using immunohistochemistry and live-cell imaging of specific mRNAs, we describe for the first time the subcellular localization of selected Par proteins in blastomeres and epithelial cells during the embryogenesis of the ctenophore Mnemiopsis leidyi. We show that these proteins distribute differently compared to what has been described for other animals, even though they segregate in a host-specific fashion when expressed in cnidarian embryos. This differential localization might be related to the emergence of different junctional complexes during metazoan evolution.

Data availability

Genomic and Sequencing data can be found in the Mnemiopsis Genome Project (NIH-NHGRI) webpage http://kona.nhgri.nih.gov/mnemiopsis/All data generated or analyzed during this study are included in the manuscript and supporting files. Raw data for all images are available upon request to the authors.

Article and author information

Author details

  1. Miguel Salinas-Saavedra

    Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
    For correspondence
    miguel.salinas-saavedra@nuigalway.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1598-9881
  2. Mark Q Martindale

    Whitney laboratory, University of Florida, Saint Augustine, United States
    For correspondence
    mqmartin@whitney.ufl.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (NSF IOS-1755364)

  • Mark Q Martindale

National Aeronautics and Space Administration (NASA 16-EXO16_2-0041)

  • Mark Q Martindale

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patricia J Wittkopp, University of Michigan, United States

Version history

  1. Received: January 6, 2020
  2. Accepted: July 23, 2020
  3. Accepted Manuscript published: July 27, 2020 (version 1)
  4. Accepted Manuscript updated: July 30, 2020 (version 2)
  5. Version of Record published: August 20, 2020 (version 3)

Copyright

© 2020, Salinas-Saavedra & Martindale

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,855
    views
  • 269
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miguel Salinas-Saavedra
  2. Mark Q Martindale
(2020)
Par protein localization during the early development of Mnemiopsis leidyi suggests different modes of epithelial organization in the Metazoa
eLife 9:e54927.
https://doi.org/10.7554/eLife.54927

Share this article

https://doi.org/10.7554/eLife.54927

Further reading

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.