1. Developmental Biology
  2. Evolutionary Biology
Download icon

Par protein localization during the early development of Mnemiopsis leidyi suggests different modes of epithelial organization in the Metazoa

  1. Miguel Salinas-Saavedra  Is a corresponding author
  2. Mark Q Martindale  Is a corresponding author
  1. National University of Ireland Galway, Ireland
  2. University of Florida, United States
Short Report
  • Cited 0
  • Views 368
  • Annotations
Cite this article as: eLife 2020;9:e54927 doi: 10.7554/eLife.54927

Abstract

In bilaterians and cnidarians, epithelial cell-polarity is regulated by the interactions between Par proteins, Wnt/PCP signaling pathway, and cell-cell adhesion. Par proteins are highly conserved across Metazoa, including ctenophores. But strikingly, ctenophore genomes lack components of the Wnt/PCP pathway and cell-cell adhesion complexes raising the question if ctenophore cells are polarized by mechanisms involving Par proteins. Here, by using immunohistochemistry and live-cell imaging of specific mRNAs, we describe for the first time the subcellular localization of selected Par proteins in blastomeres and epithelial cells during the embryogenesis of the ctenophore Mnemiopsis leidyi. We show that these proteins distribute differently compared to what has been described for other animals, even though they segregate in a host-specific fashion when expressed in cnidarian embryos. This differential localization might be related to the emergence of different junctional complexes during metazoan evolution.

Article and author information

Author details

  1. Miguel Salinas-Saavedra

    Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
    For correspondence
    miguel.salinas-saavedra@nuigalway.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1598-9881
  2. Mark Q Martindale

    Whitney laboratory, University of Florida, Saint Augustine, United States
    For correspondence
    mqmartin@whitney.ufl.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (NSF IOS-1755364)

  • Mark Q Martindale

National Aeronautics and Space Administration (NASA 16-EXO16_2-0041)

  • Mark Q Martindale

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patricia J Wittkopp, University of Michigan, United States

Publication history

  1. Received: January 6, 2020
  2. Accepted: July 23, 2020
  3. Accepted Manuscript published: July 27, 2020 (version 1)
  4. Accepted Manuscript updated: July 30, 2020 (version 2)

Copyright

© 2020, Salinas-Saavedra & Martindale

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 368
    Page views
  • 94
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Theodora Koromila et al.
    Research Article Updated

    Pioneer factors such as Zelda (Zld) help initiate zygotic transcription in Drosophila early embryos, but whether other factors support this dynamic process is unclear. Odd-paired (Opa), a zinc-finger transcription factor expressed at cellularization, controls the transition of genes from pair-rule to segmental patterns along the anterior-posterior axis. Finding that Opa also regulates expression through enhancer sog_Distal along the dorso-ventral axis, we hypothesized Opa’s role is more general. Chromatin-immunoprecipitation (ChIP-seq) confirmed its in vivo binding to sog_Distal but also identified widespread binding throughout the genome, comparable to Zld. Furthermore, chromatin assays (ATAC-seq) demonstrate that Opa, like Zld, influences chromatin accessibility genome-wide at cellularization, suggesting both are pioneer factors with common as well as distinct targets. Lastly, embryos lacking opa exhibit widespread, late patterning defects spanning both axes. Collectively, these data suggest Opa is a general timing factor and likely late-acting pioneer factor that drives a secondary wave of zygotic gene expression.

    1. Developmental Biology
    Laurent Jutras-Dubé et al.
    Research Article

    During development, cells gradually assume specialized fates via changes of transcriptional dynamics, sometimes even within the same developmental stage. For anterior-posterior (AP) patterning in metazoans, it has been suggested that the gradual transition from a dynamic genetic regime to a static one is encoded by different transcriptional modules. In that case, the static regime has an essential role in pattern formation in addition to its maintenance function. In this work, we introduce a geometric approach to study such transition. We exhibit two types of genetic regime transitions, respectively arising through local or global bifurcations. We find that the global bifurcation type is more generic, more robust, and better preserves dynamical information. This could parsimoniously explain common features of metazoan segmentation, such as changes of periods leading to waves of gene expressions, 'speed/frequency-gradient' dynamics, and changes of wave patterns. Geometric approaches appear as possible alternatives to gene regulatory networks to understand development.